These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21895486)

  • 21. Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis.
    Lam RH; Sun Y; Chen W; Fu J
    Lab Chip; 2012 Apr; 12(10):1865-73. PubMed ID: 22437210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic model of angiogenic sprouting.
    Song JW; Bazou D; Munn LL
    Methods Mol Biol; 2015; 1214():243-54. PubMed ID: 25468609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.
    Tang Z; Akiyama Y; Itoga K; Kobayashi J; Yamato M; Okano T
    Biomaterials; 2012 Oct; 33(30):7405-11. PubMed ID: 22818649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Isolation of human umbilical vein endothelial cells and their use in the study of neutrophil transmigration under flow conditions.
    Ganguly A; Zhang H; Sharma R; Parsons S; Patel KD
    J Vis Exp; 2012 Aug; (66):e4032. PubMed ID: 22895248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-swelling hydrogel-based microfluidic chips.
    Shen C; Li Y; Wang Y; Meng Q
    Lab Chip; 2019 Dec; 19(23):3962-3973. PubMed ID: 31656966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pumpless microfluidic devices for generating healthy and diseased endothelia.
    Yang Y; Fathi P; Holland G; Pan D; Wang NS; Esch MB
    Lab Chip; 2019 Sep; 19(19):3212-3219. PubMed ID: 31455960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Endothelial cell polarization and chemotaxis in a microfluidic device.
    Shamloo A; Ma N; Poo MM; Sohn LL; Heilshorn SC
    Lab Chip; 2008 Aug; 8(8):1292-9. PubMed ID: 18651071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of unconventional inertial microfluidic channels using wax 3D printing.
    Raoufi MA; Razavi Bazaz S; Niazmand H; Rouhi O; Asadnia M; Razmjou A; Ebrahimi Warkiani M
    Soft Matter; 2020 Mar; 16(10):2448-2459. PubMed ID: 31984393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A palmtop-sized microfluidic cell culture system driven by a miniaturized infusion pump.
    Sasaki N; Shinjo M; Hirakawa S; Nishinaka M; Tanaka Y; Mawatari K; Kitamori T; Sato K
    Electrophoresis; 2012 Jul; 33(12):1729-35. PubMed ID: 22740461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices.
    Yeon JH; Ryu HR; Chung M; Hu QP; Jeon NL
    Lab Chip; 2012 Aug; 12(16):2815-22. PubMed ID: 22767334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microvasculature on a chip: study of the Endothelial Surface Layer and the flow structure of Red Blood Cells.
    Tsvirkun D; Grichine A; Duperray A; Misbah C; Bureau L
    Sci Rep; 2017 Mar; 7():45036. PubMed ID: 28338083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An easy-to-handle microfluidic device suitable for immunohistochemical procedures in mammalian cells grown under flow conditions.
    Fede C; Fortunati I; Petrelli L; Guidolin D; De Caro R; Ferrante C; Albertin G
    Eur J Histochem; 2014 May; 58(2):2360. PubMed ID: 24998924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses.
    Zheng C; Zhang X; Li C; Pang Y; Huang Y
    Anal Chem; 2017 Mar; 89(6):3710-3715. PubMed ID: 28225604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of bacterial streamers during filtration in microfluidic systems.
    Marty A; Roques C; Causserand C; Bacchin P
    Biofouling; 2012; 28(6):551-62. PubMed ID: 22686836
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple haptotactic gradient generation within a triangular microfluidic channel.
    Park J; Kim DH; Kim G; Kim Y; Choi E; Levchenko A
    Lab Chip; 2010 Aug; 10(16):2130-8. PubMed ID: 20532357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of microfluidic channel geometry on leukocyte rolling assays.
    Coghill PA; Kesselhuth EK; Shimp EA; Khismatullin DB; Schmidtke DW
    Biomed Microdevices; 2013 Feb; 15(1):183-93. PubMed ID: 23064889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of arsenic pentaoxide on proliferation and apoptosis of human umbilical vein endothelial cell].
    Sun YK; Wang SJ; Zhao YQ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2009 Oct; 31(5):538-41. PubMed ID: 19968065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.