These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 21895658)

  • 1. Retinoic acid influences neuronal migration from the ganglionic eminence to the cerebral cortex.
    Crandall JE; Goodman T; McCarthy DM; Duester G; Bhide PG; Dräger UC; McCaffery P
    J Neurochem; 2011 Nov; 119(4):723-35. PubMed ID: 21895658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon.
    Powell EM; Mars WM; Levitt P
    Neuron; 2001 Apr; 30(1):79-89. PubMed ID: 11343646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient calbindin-D28k-positive systems in the telencephalon: ganglionic eminence, developing striatum and cerebral cortex.
    Liu FC; Graybiel AM
    J Neurosci; 1992 Feb; 12(2):674-90. PubMed ID: 1740695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice.
    Crandall JE; Hackett HE; Tobet SA; Kosofsky BE; Bhide PG
    Cereb Cortex; 2004 Jun; 14(6):665-75. PubMed ID: 15054047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex.
    Myers AK; Meechan DW; Adney DR; Tucker ES
    J Neurosci; 2014 Jun; 34(23):7787-801. PubMed ID: 24899703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia.
    Chatzi C; Brade T; Duester G
    PLoS Biol; 2011 Apr; 9(4):e1000609. PubMed ID: 21532733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A role for mDia, a Rho-regulated actin nucleator, in tangential migration of interneuron precursors.
    Shinohara R; Thumkeo D; Kamijo H; Kaneko N; Sawamoto K; Watanabe K; Takebayashi H; Kiyonari H; Ishizaki T; Furuyashiki T; Narumiya S
    Nat Neurosci; 2012 Jan; 15(3):373-80, S1-2. PubMed ID: 22246438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origins of cortical interneuron subtypes.
    Xu Q; Cobos I; De La Cruz E; Rubenstein JL; Anderson SA
    J Neurosci; 2004 Mar; 24(11):2612-22. PubMed ID: 15028753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence.
    Steinecke A; Gampe C; Zimmer G; Rudolph J; Bolz J
    Development; 2014 Jan; 141(2):460-71. PubMed ID: 24381199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of multiple dopamine signal transduction molecules by retinoids in the developing striatum.
    Wang HF; Liu FC
    Neuroscience; 2005; 134(1):97-105. PubMed ID: 15939542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates.
    Xu Q; Guo L; Moore H; Waclaw RR; Campbell K; Anderson SA
    Neuron; 2010 Feb; 65(3):328-40. PubMed ID: 20159447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors.
    Kohwi M; Petryniak MA; Long JE; Ekker M; Obata K; Yanagawa Y; Rubenstein JL; Alvarez-Buylla A
    J Neurosci; 2007 Jun; 27(26):6878-91. PubMed ID: 17596436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The germinal zones of the basal ganglia but not the septum generate GABAergic interneurons for the cortex.
    Rubin AN; Alfonsi F; Humphreys MP; Choi CK; Rocha SF; Kessaris N
    J Neurosci; 2010 Sep; 30(36):12050-62. PubMed ID: 20826668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons.
    Waclaw RR; Allen ZJ; Bell SM; Erdélyi F; Szabó G; Potter SS; Campbell K
    Neuron; 2006 Feb; 49(4):503-16. PubMed ID: 16476661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin.
    Hevner RF; Neogi T; Englund C; Daza RA; Fink A
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):39-53. PubMed ID: 12644247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in reelin-positive cells in the marginal zone of Pax6 mutant mouse cortex.
    Stoykova A; Hatano O; Gruss P; Götz M
    Cereb Cortex; 2003 Jun; 13(6):560-71. PubMed ID: 12764029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial regulation of interneuron distribution in the developing cerebral cortex--an in vitro study.
    Lourenço MR; Garcez PP; Lent R; Uziel D
    Neuroscience; 2012 Jan; 201():357-65. PubMed ID: 22079578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tangential migration of cells from the basal to the dorsal telencephalic regions in the chick.
    Tuorto F; Alifragis P; Failla V; Parnavelas JG; Gulisano M
    Eur J Neurosci; 2003 Dec; 18(12):3388-93. PubMed ID: 14686912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons.
    Miyoshi G; Young A; Petros T; Karayannis T; McKenzie Chang M; Lavado A; Iwano T; Nakajima M; Taniguchi H; Huang ZJ; Heintz N; Oliver G; Matsuzaki F; Machold RP; Fishell G
    J Neurosci; 2015 Sep; 35(37):12869-89. PubMed ID: 26377473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical cultures.
    Trinh HH; Reid J; Shin E; Liapi A; Parnavelas JG; Nadarajah B
    Eur J Neurosci; 2006 Dec; 24(11):2967-77. PubMed ID: 17156358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.