These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 21895696)
1. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Zhou ZS; Zeng HQ; Liu ZP; Yang ZM Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696 [TBL] [Abstract][Full Text] [Related]
2. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Zhou ZS; Huang SQ; Yang ZM Biochem Biophys Res Commun; 2008 Sep; 374(3):538-42. PubMed ID: 18662674 [TBL] [Abstract][Full Text] [Related]
3. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Hao DC; Yang L; Xiao PG; Liu M Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792 [TBL] [Abstract][Full Text] [Related]
4. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing. Wang TZ; Zhang WH Methods Mol Biol; 2013; 1069():67-80. PubMed ID: 23996309 [TBL] [Abstract][Full Text] [Related]
6. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. Szittya G; Moxon S; Santos DM; Jing R; Fevereiro MP; Moulton V; Dalmay T BMC Genomics; 2008 Dec; 9():593. PubMed ID: 19068109 [TBL] [Abstract][Full Text] [Related]
7. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level. Chen L; Wang T; Zhao M; Zhang W Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705 [TBL] [Abstract][Full Text] [Related]
8. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Wang T; Chen L; Zhao M; Tian Q; Zhang WH BMC Genomics; 2011 Jul; 12():367. PubMed ID: 21762498 [TBL] [Abstract][Full Text] [Related]
9. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. Paul S; Kundu A; Pal A J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283 [TBL] [Abstract][Full Text] [Related]
10. Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula. Zhou ZS; Yang SN; Li H; Zhu CC; Liu ZP; Yang ZM J Hazard Mater; 2013 May; 252-253():123-31. PubMed ID: 23500795 [TBL] [Abstract][Full Text] [Related]
11. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Chen L; Wang T; Zhao M; Tian Q; Zhang WH Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758 [TBL] [Abstract][Full Text] [Related]
12. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289 [TBL] [Abstract][Full Text] [Related]
13. Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in Cao C; Long R; Zhang T; Kang J; Wang Z; Wang P; Sun H; Yu J; Yang Q Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562933 [TBL] [Abstract][Full Text] [Related]
14. Computational prediction of candidate miRNAs and their targets from Medicago truncatula non-protein-coding transcripts. Wen J; Frickey T; Weiller GF In Silico Biol; 2008; 8(3-4):291-306. PubMed ID: 19032163 [TBL] [Abstract][Full Text] [Related]
15. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Devers EA; Branscheid A; May P; Krajinski F Plant Physiol; 2011 Aug; 156(4):1990-2010. PubMed ID: 21571671 [TBL] [Abstract][Full Text] [Related]
16. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing. Wang F; Li H; Zhang Y; Li J; Li L; Liu L; Wang L; Wang C; Gao J Gene; 2013 Dec; 532(2):222-9. PubMed ID: 24055726 [TBL] [Abstract][Full Text] [Related]
18. High-throughput sequence analysis of small RNAs in skotomorphogenic seedlings of Brassica rapa ssp. rapa. Zhou B; Fan P; Li Y Gene; 2014 Sep; 548(1):68-74. PubMed ID: 25016069 [TBL] [Abstract][Full Text] [Related]
19. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level. Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842 [TBL] [Abstract][Full Text] [Related]
20. Deep sequencing discovery of novel and conserved microRNAs in strawberry (Fragaria×ananassa). Ge A; Shangguan L; Zhang X; Dong Q; Han J; Liu H; Wang X; Fang J Physiol Plant; 2013 Jul; 148(3):387-96. PubMed ID: 23061771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]