BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 21895696)

  • 1. Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal.
    Zhou ZS; Zeng HQ; Liu ZP; Yang ZM
    Plant Cell Environ; 2012 Jan; 35(1):86-99. PubMed ID: 21895696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula.
    Zhou ZS; Huang SQ; Yang ZM
    Biochem Biophys Res Commun; 2008 Sep; 374(3):538-42. PubMed ID: 18662674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis.
    Hao DC; Yang L; Xiao PG; Liu M
    Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula.
    Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC
    Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide identification of microRNAs in Medicago truncatula by high-throughput sequencing.
    Wang TZ; Zhang WH
    Methods Mol Biol; 2013; 1069():67-80. PubMed ID: 23996309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families.
    Szittya G; Moxon S; Santos DM; Jing R; Fevereiro MP; Moulton V; Dalmay T
    BMC Genomics; 2008 Dec; 9():593. PubMed ID: 19068109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level.
    Chen L; Wang T; Zhao M; Zhang W
    Plant Sci; 2012 Mar; 184():14-9. PubMed ID: 22284705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.
    Wang T; Chen L; Zhao M; Tian Q; Zhang WH
    BMC Genomics; 2011 Jul; 12():367. PubMed ID: 21762498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing.
    Paul S; Kundu A; Pal A
    J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula.
    Zhou ZS; Yang SN; Li H; Zhu CC; Liu ZP; Yang ZM
    J Hazard Mater; 2013 May; 252-253():123-31. PubMed ID: 23500795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing.
    Chen L; Wang T; Zhao M; Tian Q; Zhang WH
    Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress.
    Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B
    Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Identification of microRNAs in Response to Salt/Alkali Stress in
    Cao C; Long R; Zhang T; Kang J; Wang Z; Wang P; Sun H; Yu J; Yang Q
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30562933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of candidate miRNAs and their targets from Medicago truncatula non-protein-coding transcripts.
    Wen J; Frickey T; Weiller GF
    In Silico Biol; 2008; 8(3-4):291-306. PubMed ID: 19032163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis.
    Devers EA; Branscheid A; May P; Krajinski F
    Plant Physiol; 2011 Aug; 156(4):1990-2010. PubMed ID: 21571671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.
    Chen J; Zheng Y; Qin L; Wang Y; Chen L; He Y; Fei Z; Lu G
    BMC Plant Biol; 2016 Apr; 16():80. PubMed ID: 27068118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing.
    Wang F; Li H; Zhang Y; Li J; Li L; Liu L; Wang L; Wang C; Gao J
    Gene; 2013 Dec; 532(2):222-9. PubMed ID: 24055726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput sequence analysis of small RNAs in skotomorphogenic seedlings of Brassica rapa ssp. rapa.
    Zhou B; Fan P; Li Y
    Gene; 2014 Sep; 548(1):68-74. PubMed ID: 25016069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level.
    Li C; Li Y; Bai L; Zhang T; He C; Yan Y; Yu X
    Physiol Plant; 2014 Aug; 151(4):406-22. PubMed ID: 24279842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep sequencing discovery of novel and conserved microRNAs in strawberry (Fragaria×ananassa).
    Ge A; Shangguan L; Zhang X; Dong Q; Han J; Liu H; Wang X; Fang J
    Physiol Plant; 2013 Jul; 148(3):387-96. PubMed ID: 23061771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.