These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21895797)

  • 1. Negative control in two-component signal transduction by transmitter phosphatase activity.
    Huynh TN; Stewart V
    Mol Microbiol; 2011 Oct; 82(2):275-86. PubMed ID: 21895797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX.
    Huynh TN; Noriega CE; Stewart V
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):21140-5. PubMed ID: 21078995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate.
    Pazy Y; Motaleb MA; Guarnieri MT; Charon NW; Zhao R; Silversmith RE
    Proc Natl Acad Sci U S A; 2010 Feb; 107(5):1924-9. PubMed ID: 20080618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signalling.
    Huynh TN; Noriega CE; Stewart V
    Mol Microbiol; 2013 May; 88(3):459-72. PubMed ID: 23517441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxiliary phosphatases in two-component signal transduction.
    Silversmith RE
    Curr Opin Microbiol; 2010 Apr; 13(2):177-83. PubMed ID: 20133180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How important is the phosphatase activity of sensor kinases?
    Kenney LJ
    Curr Opin Microbiol; 2010 Apr; 13(2):168-76. PubMed ID: 20223700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities.
    Willett JW; Kirby JR
    PLoS Genet; 2012; 8(11):e1003084. PubMed ID: 23226719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in phosphatase CheZ of bacterial chemotaxis signaling pathway].
    Liu X; Liu W; Xie Z
    Wei Sheng Wu Xue Bao; 2017 Jan; 57(1):15-23. PubMed ID: 29746056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli.
    Iuchi S
    J Biol Chem; 1993 Nov; 268(32):23972-80. PubMed ID: 8226939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assays for CheC, FliY, and CheX as representatives of response regulator phosphatases.
    Muff TJ; Ordal GW
    Methods Enzymol; 2007; 423():336-48. PubMed ID: 17609139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells.
    Wayne KJ; Li S; Kazmierczak KM; Tsui HC; Winkler ME
    Mol Microbiol; 2012 Nov; 86(3):645-60. PubMed ID: 23013245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of response regulator dephosphorylation by Rap phosphatases.
    Parashar V; Mirouze N; Dubnau DA; Neiditch MB
    PLoS Biol; 2011 Feb; 9(2):e1000589. PubMed ID: 21346797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action at a distance: amino acid substitutions that affect binding of the phosphorylated CheY response regulator and catalysis of dephosphorylation can be far from the CheZ phosphatase active site.
    Freeman AM; Mole BM; Silversmith RE; Bourret RB
    J Bacteriol; 2011 Sep; 193(18):4709-18. PubMed ID: 21764922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of σ factors by conserved partner switches controlled by divergent signalling systems.
    Bouillet S; Arabet D; Jourlin-Castelli C; Méjean V; Iobbi-Nivol C
    Environ Microbiol Rep; 2018 Apr; 10(2):127-139. PubMed ID: 29393573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ.
    Zhao R; Collins EJ; Bourret RB; Silversmith RE
    Nat Struct Biol; 2002 Aug; 9(8):570-5. PubMed ID: 12080332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphohistidine phosphatase SixA dephosphorylates the phosphocarrier NPr.
    Schulte JE; Roggiani M; Shi H; Zhu J; Goulian M
    J Biol Chem; 2021; 296():100090. PubMed ID: 33199374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of phosphatase activity in bacterial chemotaxis.
    Blat Y; Gillespie B; Bren A; Dahlquist FW; Eisenbach M
    J Mol Biol; 1998 Dec; 284(4):1191-9. PubMed ID: 9837737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-component signaling circuit structure and properties.
    Goulian M
    Curr Opin Microbiol; 2010 Apr; 13(2):184-9. PubMed ID: 20149717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis.
    Motaleb MA; Miller MR; Li C; Bakker RG; Goldstein SF; Silversmith RE; Bourret RB; Charon NW
    J Bacteriol; 2005 Dec; 187(23):7963-9. PubMed ID: 16291669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional dissection of the dimerization and enzymatic activities of Escherichia coli nitrogen regulator II and their regulation by the PII protein.
    Jiang P; Atkinson MR; Srisawat C; Sun Q; Ninfa AJ
    Biochemistry; 2000 Nov; 39(44):13433-49. PubMed ID: 11063580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.