These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 21895798)

  • 41. Regulation of the lysine biosynthesis in Pichia guilliermondii.
    Schmidt H; Bode R; Birnbaum D
    Antonie Van Leeuwenhoek; 1989 Nov; 56(4):337-47. PubMed ID: 2515798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diversification of Paralogous α-Isopropylmalate Synthases by Modulation of Feedback Control and Hetero-Oligomerization in Saccharomyces cerevisiae.
    López G; Quezada H; Duhne M; González J; Lezama M; El-Hafidi M; Colón M; Martínez de la Escalera X; Flores-Villegas MC; Scazzocchio C; DeLuna A; González A
    Eukaryot Cell; 2015 Jun; 14(6):564-77. PubMed ID: 25841022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stabilization and characterization of histidine-tagged homocitrate synthase from Saccharomyces cerevisiae.
    Andi B; West AH; Cook PF
    Arch Biochem Biophys; 2004 Jan; 421(2):243-54. PubMed ID: 14984204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae].
    Sun M; Liu J; Du G; Zhou J; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2013 Jun; 29(6):751-9. PubMed ID: 24063235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. General and specific controls of lysine biosynthesis in Saccharomyces cerevisiae.
    Urrestarazu LA; Borell CW; Bhattacharjee JK
    Curr Genet; 1985; 9(5):341-4. PubMed ID: 3939712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insensitivity of homocitrate synthase in extracts of Penicillium chyrosogenum to feedback inhibition by lysine.
    Masurekar PS; Demain AL
    Appl Microbiol; 1974 Aug; 28(2):265-70. PubMed ID: 4212095
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Homocitrate synthase expression and lysine content in fruiting body of different developmental stages in Flammulina velutipes.
    Liu F; Wang W; Chen BZ; Xie BG
    Curr Microbiol; 2015 Jun; 70(6):821-8. PubMed ID: 25724343
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact.
    Luttik MA; Vuralhan Z; Suir E; Braus GH; Pronk JT; Daran JM
    Metab Eng; 2008; 10(3-4):141-53. PubMed ID: 18372204
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for mutations in the structural gene for homocitrate synthase in Saccharomycopsis lipolytica.
    Gaillardin C; Heslot H
    Mol Gen Genet; 1979 May; 172(2):185-92. PubMed ID: 289893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate.
    Fazius F; Shelest E; Gebhardt P; Brock M
    Mol Microbiol; 2012 Dec; 86(6):1508-30. PubMed ID: 23106124
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative analysis of the high temperature-induced glycolytic flux increase in Saccharomyces cerevisiae reveals dominant metabolic regulation.
    Postmus J; Canelas AB; Bouwman J; Bakker BM; van Gulik W; de Mattos MJ; Brul S; Smits GJ
    J Biol Chem; 2008 Aug; 283(35):23524-32. PubMed ID: 18562308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
    Daran-Lapujade P; Rossell S; van Gulik WM; Luttik MA; de Groot MJ; Slijper M; Heck AJ; Daran JM; de Winde JH; Westerhoff HV; Pronk JT; Bakker BM
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15753-8. PubMed ID: 17898166
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A kinetic study of homocitrate synthetase activity in the yeast Saccharomycopsis lipolytica.
    Gaillardin CM; Poirier L; Heslot H
    Biochim Biophys Acta; 1976 Feb; 422(2):390-406. PubMed ID: 1247600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discovery of Unclustered Fungal Indole Diterpene Biosynthetic Pathways through Combinatorial Pathway Reassembly in Engineered Yeast.
    Tang MC; Lin HC; Li D; Zou Y; Li J; Xu W; Cacho RA; Hillenmeyer ME; Garg NK; Tang Y
    J Am Chem Soc; 2015 Nov; 137(43):13724-7. PubMed ID: 26469304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast.
    Niederberger P; Prasad R; Miozzari G; Kacser H
    Biochem J; 1992 Oct; 287 ( Pt 2)(Pt 2):473-9. PubMed ID: 1445205
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Studies on the light-induced inhibition of ascospore formation in Saccharomyces cerevisiae].
    Ehrenberg M; Halbach-Keup G; Gerth H
    Arch Mikrobiol; 1973; 90(3):233-46. PubMed ID: 4575510
    [No Abstract]   [Full Text] [Related]  

  • 57. [Novel lysine biosynthesis: a key to elucidate evolution of metabolic and biosynthetic pathways].
    Nishiyama M
    Tanpakushitsu Kakusan Koso; 2004 May; 49(6):758-63. PubMed ID: 15160885
    [No Abstract]   [Full Text] [Related]  

  • 58. Transcriptomic and chemogenomic analyses unveil the essential role of Com2-regulon in response and tolerance of
    Lage P; Sampaio-Marques B; Ludovico P; Mira NP; Mendes-Ferreira A
    Microb Cell; 2019 Sep; 6(11):509-523. PubMed ID: 31799324
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative analyses of homocitrate synthase genes of ascomycetous yeasts.
    Nishida H
    Int J Evol Biol; 2012; 2012():254941. PubMed ID: 22518332
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding the parts in terms of the whole.
    Cornish-Bowden A; Cárdenas ML; Letelier JC; Soto-Andrade J; Abarzúa FG
    Biol Cell; 2004 Dec; 96(9):713-7. PubMed ID: 15567526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.