These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 21896059)

  • 1. Co-development of proprioceptive afferents and the corticospinal tract within the cervical spinal cord.
    Chakrabarty S; Martin JH
    Eur J Neurosci; 2011 Sep; 34(5):682-94. PubMed ID: 21896059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal refinement of proprioceptive afferents in the cat cervical spinal cord.
    Chakrabarty S; Martin J
    Eur J Neurosci; 2011 May; 33(9):1656-66. PubMed ID: 21501251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.
    Jiang YQ; Zaaimi B; Martin JH
    J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor Cortex Activity Organizes the Developing Rubrospinal System.
    Williams PT; Martin JH
    J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The pyramidal tract. Recent anatomic and physiologic findings].
    Armand J
    Rev Neurol (Paris); 1984; 140(5):309-29. PubMed ID: 6379818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development of corticospinal postsynaptic action.
    Meng Z; Martin JH
    J Neurophysiol; 2003 Aug; 90(2):683-92. PubMed ID: 12702708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The corticospinal system: from development to motor control.
    Martin JH
    Neuroscientist; 2005 Apr; 11(2):161-73. PubMed ID: 15746384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent codevelopment of the corticospinal system and target interneurons in the cervical spinal cord.
    Chakrabarty S; Shulman B; Martin JH
    J Neurosci; 2009 Jul; 29(27):8816-27. PubMed ID: 19587289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective corticospinal tract injury in the rat induces primary afferent fiber sprouting in the spinal cord and hyperreflexia.
    Tan AM; Chakrabarty S; Kimura H; Martin JH
    J Neurosci; 2012 Sep; 32(37):12896-908. PubMed ID: 22973013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the corticospinal tract in the mouse spinal cord: a quantitative ultrastructural analysis.
    Hsu JY; Stein SA; Xu XM
    Brain Res; 2006 Apr; 1084(1):16-27. PubMed ID: 16616050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal development of a segmental switch enables corticospinal tract transmission to spinal forelimb motor circuits.
    Chakrabarty S; Martin JH
    J Neurosci; 2010 Feb; 30(6):2277-88. PubMed ID: 20147554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade.
    Salimi I; Friel KM; Martin JH
    J Neurosci; 2008 Jul; 28(29):7426-34. PubMed ID: 18632946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergence of forelimb afferent actions on C7-Th1 propriospinal neurones bilaterally projecting to sacral segments of the cat spinal cord.
    Krutki P; Mrówczyński W
    Arch Ital Biol; 2004 Feb; 142(1):47-58. PubMed ID: 15143623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticomotoneuronal connections in the rat: evidence from double-labeling of motoneurons and corticospinal axon arborizations.
    Liang FY; Moret V; Wiesendanger M; Rouiller EM
    J Comp Neurol; 1991 Sep; 311(3):356-66. PubMed ID: 1720143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development of the ipsilateral corticospinal component in rat spinal cord: a light and electron microscopic anterograde HRP study.
    Joosten EA; Schuitman RL; Vermelis ME; Dederen PJ
    J Comp Neurol; 1992 Dec; 326(1):133-46. PubMed ID: 1479066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eph tyrosine kinase receptor EphA4 is required for the topographic mapping of the corticospinal tract.
    Canty AJ; Greferath U; Turnley AM; Murphy M
    Proc Natl Acad Sci U S A; 2006 Oct; 103(42):15629-34. PubMed ID: 17030822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei.
    Neuhuber WL; Zenker W
    J Comp Neurol; 1989 Feb; 280(2):231-53. PubMed ID: 2466876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Congenital absence of corticospinal tract does not severely affect plastic changes of the developing postnatal spinal cord.
    Huang L; Xian Q; Shen N; Shi L; Qu Y; Zhou L
    Neuroscience; 2015 Aug; 301():338-50. PubMed ID: 26079333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey.
    Toyoshima K; Sakai H
    J Hirnforsch; 1982; 23(3):257-69. PubMed ID: 7130676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.