These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21896383)

  • 1. Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe.
    Welkenhuysen M; Andrei A; Ameye L; Eberle W; Nuttin B
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3250-9. PubMed ID: 21896383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays.
    He W; McConnell GC; Bellamkonda RV
    J Neural Eng; 2006 Dec; 3(4):316-26. PubMed ID: 17124336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow insertion of silicon probes improves the quality of acute neuronal recordings.
    Fiáth R; Márton AL; Mátyás F; Pinke D; Márton G; Tóth K; Ulbert I
    Sci Rep; 2019 Jan; 9(1):111. PubMed ID: 30643182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertion mechanics of amorphous SiC ultra-micro scale neural probes.
    Geramifard N; Dousti B; Nguyen C; Abbott J; Cogan SF; Varner VD
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35263724
    [No Abstract]   [Full Text] [Related]  

  • 7. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion.
    Fekete Z; Németh A; Márton G; Ulbert I; Pongrácz A
    J Mater Sci Mater Med; 2015 Feb; 26(2):70. PubMed ID: 25631267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During In Vivo Microelectrode Insertion Into Rat Brain.
    Chen L; Hartner J; Dong T; Li A; Watson B; Shih A
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2602-2612. PubMed ID: 33798065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A response surface model predicting the in vivo insertion behavior of micromachined neural implants.
    Andrei A; Welkenhuysen M; Nuttin B; Eberle W
    J Neural Eng; 2012 Feb; 9(1):016005. PubMed ID: 22156141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays.
    Biran R; Martin DC; Tresco PA
    Exp Neurol; 2005 Sep; 195(1):115-26. PubMed ID: 16045910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compliant intracortical implants reduce strains and strain rates in brain tissue in vivo.
    Sridharan A; Nguyen JK; Capadona JR; Muthuswamy J
    J Neural Eng; 2015 Jun; 12(3):036002. PubMed ID: 25834105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion shuttle with carboxyl terminated self-assembled monolayer coatings for implanting flexible polymer neural probes in the brain.
    Kozai TD; Kipke DR
    J Neurosci Methods; 2009 Nov; 184(2):199-205. PubMed ID: 19666051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of gliosis around moveable implants in the brain.
    Stice P; Muthuswamy J
    J Neural Eng; 2009 Aug; 6(4):046004. PubMed ID: 19556680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design.
    Singh S; Lo MC; Damodaran VB; Kaplan HM; Kohn J; Zahn JD; Shreiber DI
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seeding neural progenitor cells on silicon-based neural probes.
    Azemi E; Gobbel GT; Cui XT
    J Neurosurg; 2010 Sep; 113(3):673-81. PubMed ID: 20151783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetically Inserted Neural Electrodes: Tissue Response and Functional Lifetime.
    Dryg ID; Ward MP; Qing KY; Mei H; Schaffer JE; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):562-71. PubMed ID: 25706720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of neural probe's insertion induced injury based on digital image correlation method.
    Zhang W; Ma Y; Li Z
    Med Phys; 2016 Jan; 43(1):505. PubMed ID: 26745943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.