These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 21896383)
1. Effect of insertion speed on tissue response and insertion mechanics of a chronically implanted silicon-based neural probe. Welkenhuysen M; Andrei A; Ameye L; Eberle W; Nuttin B IEEE Trans Biomed Eng; 2011 Nov; 58(11):3250-9. PubMed ID: 21896383 [TBL] [Abstract][Full Text] [Related]
2. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex. Jensen W; Yoshida K; Hofmann UG IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion. Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103 [TBL] [Abstract][Full Text] [Related]
5. Slow insertion of silicon probes improves the quality of acute neuronal recordings. Fiáth R; Márton AL; Mátyás F; Pinke D; Márton G; Tóth K; Ulbert I Sci Rep; 2019 Jan; 9(1):111. PubMed ID: 30643182 [TBL] [Abstract][Full Text] [Related]
7. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance. Paralikar KJ; Clement RS IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695 [TBL] [Abstract][Full Text] [Related]
8. Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion. Fekete Z; Németh A; Márton G; Ulbert I; Pongrácz A J Mater Sci Mater Med; 2015 Feb; 26(2):70. PubMed ID: 25631267 [TBL] [Abstract][Full Text] [Related]
9. Flexible High-Resolution Force and Dimpling Measurement System for Pia and Dura Penetration During In Vivo Microelectrode Insertion Into Rat Brain. Chen L; Hartner J; Dong T; Li A; Watson B; Shih A IEEE Trans Biomed Eng; 2021 Aug; 68(8):2602-2612. PubMed ID: 33798065 [TBL] [Abstract][Full Text] [Related]
10. A response surface model predicting the in vivo insertion behavior of micromachined neural implants. Andrei A; Welkenhuysen M; Nuttin B; Eberle W J Neural Eng; 2012 Feb; 9(1):016005. PubMed ID: 22156141 [TBL] [Abstract][Full Text] [Related]
11. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Biran R; Martin DC; Tresco PA Exp Neurol; 2005 Sep; 195(1):115-26. PubMed ID: 16045910 [TBL] [Abstract][Full Text] [Related]
18. Experimental evaluation of neural probe's insertion induced injury based on digital image correlation method. Zhang W; Ma Y; Li Z Med Phys; 2016 Jan; 43(1):505. PubMed ID: 26745943 [TBL] [Abstract][Full Text] [Related]
19. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain. McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828 [TBL] [Abstract][Full Text] [Related]
20. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP; Rajdev P; Ellison C; Irazoqui PP Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]