BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21896571)

  • 1. Histone octamer trans-transfer: a signature mechanism of ATP-dependent chromatin remodelling unravelled in wheat nuclear extract.
    Raut VV; Pandey SM; Sainis JK
    Ann Bot; 2011 Nov; 108(7):1235-46. PubMed ID: 21896571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler.
    Sinha KK; Gross JD; Narlikar GJ
    Science; 2017 Jan; 355(6322):. PubMed ID: 28104838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex.
    Tong JK; Hassig CA; Schnitzler GR; Kingston RE; Schreiber SL
    Nature; 1998 Oct; 395(6705):917-21. PubMed ID: 9804427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer?
    Flaus A; Owen-Hughes T
    Curr Opin Genet Dev; 2004 Apr; 14(2):165-73. PubMed ID: 15196463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer.
    Längst G; Bonte EJ; Corona DF; Becker PB
    Cell; 1999 Jun; 97(7):843-52. PubMed ID: 10399913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p300-mediated acetylation facilitates the transfer of histone H2A-H2B dimers from nucleosomes to a histone chaperone.
    Ito T; Ikehara T; Nakagawa T; Kraus WL; Muramatsu M
    Genes Dev; 2000 Aug; 14(15):1899-907. PubMed ID: 10921904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the chromatin remodelling enzyme Chd1 bound to a ubiquitinylated nucleosome.
    Sundaramoorthy R; Hughes AL; El-Mkami H; Norman DG; Ferreira H; Owen-Hughes T
    Elife; 2018 Aug; 7():. PubMed ID: 30079888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone Octamer Structure Is Altered Early in ISW2 ATP-Dependent Nucleosome Remodeling.
    Hada A; Hota SK; Luo J; Lin YC; Kale S; Shaytan AK; Bhardwaj SK; Persinger J; Ranish J; Panchenko AR; Bartholomew B
    Cell Rep; 2019 Jul; 28(1):282-294.e6. PubMed ID: 31269447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and versatile system for the ATP-dependent assembly of chromatin.
    Khuong MT; Fei J; Cruz-Becerra G; Kadonaga JT
    J Biol Chem; 2017 Nov; 292(47):19478-19490. PubMed ID: 28982979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence and functional differences in the ATPase domains of CHD3 and SNF2H promise potential for selective regulability and drugability.
    Hoffmeister H; Fuchs A; Komives E; Groebner-Ferreira R; Strobl L; Nazet J; Heizinger L; Merkl R; Dove S; Längst G
    FEBS J; 2021 Jul; 288(13):4000-4023. PubMed ID: 33403747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP dependent histone phosphorylation and nucleosome assembly in a human cell free extract.
    Banerjee S; Bennion GR; Goldberg MW; Allen TD
    Nucleic Acids Res; 1991 Nov; 19(21):5999-6006. PubMed ID: 1945884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for ATP-dependent chromatin remodelling: the means to the end.
    Flaus A; Owen-Hughes T
    FEBS J; 2011 Oct; 278(19):3579-95. PubMed ID: 21810178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of nucleosome disruption and octamer transfer by the chicken SWI/SNF-like complex.
    Panigrahi AK; Tomar RS; Chaturvedi MM
    Biochem Biophys Res Commun; 2003 Jun; 306(1):72-8. PubMed ID: 12788068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approaches for studying nucleosome movement by ATP-dependent chromatin remodeling complexes.
    Hota SK; Bartholomew B
    Methods Mol Biol; 2012; 809():367-80. PubMed ID: 22113289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms.
    Ferreira H; Flaus A; Owen-Hughes T
    J Mol Biol; 2007 Nov; 374(3):563-79. PubMed ID: 17949749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo analysis reveals that ATP-hydrolysis couples remodeling to SWI/SNF release from chromatin.
    Tilly BC; Chalkley GE; van der Knaap JA; Moshkin YM; Kan TW; Dekkers DH; Demmers JA; Verrijzer CP
    Elife; 2021 Jul; 10():. PubMed ID: 34313222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of ATP-dependent chromatin assembly by ACF.
    Fyodorov DV; Kadonaga JT
    Nature; 2002 Aug; 418(6900):897-900. PubMed ID: 12192415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin remodeling by imitation switch (ISWI) class ATP-dependent remodelers is stimulated by histone variant H2A.Z.
    Goldman JA; Garlick JD; Kingston RE
    J Biol Chem; 2010 Feb; 285(7):4645-51. PubMed ID: 19940112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of human chromatin-remodelling PBAF complex bound to a nucleosome.
    Yuan J; Chen K; Zhang W; Chen Z
    Nature; 2022 May; 605(7908):166-171. PubMed ID: 35477757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes.
    Clapier CR; Iwasa J; Cairns BR; Peterson CL
    Nat Rev Mol Cell Biol; 2017 Jul; 18(7):407-422. PubMed ID: 28512350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.