BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21896722)

  • 1. Misfolded human tRNA isodecoder binds and neutralizes a 3' UTR-embedded Alu element.
    Rudinger-Thirion J; Lescure A; Paulus C; Frugier M
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):E794-802. PubMed ID: 21896722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tRNA: Vast reservoir of RNA molecules with unexpected regulatory function.
    Geslain R; Pan T
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16489-90. PubMed ID: 21933958
    [No Abstract]   [Full Text] [Related]  

  • 3. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase.
    Briand C; Poterszman A; Eiler S; Webster G; Thierry J; Moras D
    J Mol Biol; 2000 Jun; 299(4):1051-60. PubMed ID: 10843857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Footprinting evidence for close contacts of the yeast tRNA(Asp) anticodon region with aspartyl-tRNA synthetase.
    Garcia A; Giege R
    Biochem Biophys Res Commun; 1992 Jul; 186(2):956-62. PubMed ID: 1497679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements.
    Gong C; Maquat LE
    Nature; 2011 Feb; 470(7333):284-8. PubMed ID: 21307942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G; Gangloff J
    J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient aminoacylation of a yeast tRNA(Asp) transcript with a 5' extension.
    Perret V; Florentz C; Giegé R
    FEBS Lett; 1990 Sep; 270(1-2):4-8. PubMed ID: 2226785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tRNA-balanced expression of a eukaryal aminoacyl-tRNA synthetase by an mRNA-mediated pathway.
    Frugier M; Ryckelynck M; Giegé R
    EMBO Rep; 2005 Sep; 6(9):860-5. PubMed ID: 16113655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermus thermophilus: a link in evolution of the tRNA-dependent amino acid amidation pathways.
    Becker HD; Kern D
    Proc Natl Acad Sci U S A; 1998 Oct; 95(22):12832-7. PubMed ID: 9789000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain.
    Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R
    J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New photoactivatable structural and affinity probes of RNAs: specific features and applications for mapping of spermine binding sites in yeast tRNA(Asp) and interaction of this tRNA with yeast aspartyl-tRNA synthetase.
    Garcia A; Giegé R; Behr JP
    Nucleic Acids Res; 1990 Jan; 18(1):89-95. PubMed ID: 2408010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identity elements for specific aminoacylation of yeast tRNA(Asp) by cognate aspartyl-tRNA synthetase.
    Pütz J; Puglisi JD; Florentz C; Giegé R
    Science; 1991 Jun; 252(5013):1696-9. PubMed ID: 2047878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of an Escherichia coli knockout strain for functional analysis of tRNA(Asp).
    McClain WH; Gabriel K
    J Mol Biol; 2001 Jul; 310(3):537-42. PubMed ID: 11439021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alu element-mediated gene silencing.
    Chen LL; DeCerbo JN; Carmichael GG
    EMBO J; 2008 Jun; 27(12):1694-705. PubMed ID: 18497743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast aspartyl-tRNA synthetase: a structural view of the aminoacylation reaction.
    Cavarelli J; Rees B; Thierry JC; Moras D
    Biochimie; 1993; 75(12):1117-23. PubMed ID: 8199247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the aminoacylation function of transfer RNA by macromolecular engineering approaches. Involvement of conformational features in the charging process of yeast tRNA(Asp).
    Giegé R; Florentz C; Garcia A; Grosjean H; Perret V; Puglisi J; Théobald-Dietrich A; Ebel JP
    Biochimie; 1990; 72(6-7):453-61. PubMed ID: 2124148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase.
    Sissler M; Eriani G; Martin F; Giegé R; Florentz C
    Nucleic Acids Res; 1997 Dec; 25(24):4899-906. PubMed ID: 9396794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation of a transfer RNA specificity by removal of modified nucleotides.
    Perret V; Garcia A; Grosjean H; Ebel JP; Florentz C; Giegé R
    Nature; 1990 Apr; 344(6268):787-9. PubMed ID: 2330033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA.
    Ryckelynck M; Masquida B; Giegé R; Frugier M
    J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity.
    Chuawong P; Likittrakulwong W; Suebka S; Wiriyatanakorn N; Saparpakorn P; Taweesablamlert A; Sudprasert W; Hendrickson T; Svasti J
    Proteins; 2020 Sep; 88(9):1133-1142. PubMed ID: 32067260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.