These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21896754)

  • 1. Pattern of trauma determines the threshold for epileptic activity in a model of cortical deafferentation.
    Volman V; Bazhenov M; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15402-7. PubMed ID: 21896754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological basis of epileptogenesis in a model of severe cortical trauma.
    Volman V; Sejnowski TJ; Bazhenov M
    J Neurophysiol; 2011 Oct; 106(4):1933-42. PubMed ID: 21775725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathological effect of homeostatic synaptic scaling on network dynamics in diseases of the cortex.
    Fröhlich F; Bazhenov M; Sejnowski TJ
    J Neurosci; 2008 Feb; 28(7):1709-20. PubMed ID: 18272691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling.
    González OC; Krishnan GP; Chauvette S; Timofeev I; Sejnowski T; Bazhenov M
    J Neurosci; 2015 Sep; 35(39):13448-62. PubMed ID: 26424890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic strength modulation after cortical trauma: a role in epileptogenesis.
    Avramescu S; Timofeev I
    J Neurosci; 2008 Jul; 28(27):6760-72. PubMed ID: 18596152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased pyramidal excitability and NMDA conductance can explain posttraumatic epileptogenesis without disinhibition: a model.
    Bush PC; Prince DA; Miller KD
    J Neurophysiol; 1999 Oct; 82(4):1748-58. PubMed ID: 10515964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth rules for the repair of Asynchronous Irregular neuronal networks after peripheral lesions.
    Sinha A; Metzner C; Davey N; Adams R; Schmuker M; Steuber V
    PLoS Comput Biol; 2021 Jun; 17(6):e1008996. PubMed ID: 34061830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis.
    Prince DA; Parada I; Scalise K; Graber K; Jin X; Shen F
    Epilepsia; 2009 Feb; 50 Suppl 2(Suppl 2):30-40. PubMed ID: 19187292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posttraumatic epilepsy: the roles of synaptic plasticity.
    Timofeev I; Bazhenov M; Avramescu S; Nita DA
    Neuroscientist; 2010 Feb; 16(1):19-27. PubMed ID: 19359668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex.
    Houweling AR; Bazhenov M; Timofeev I; Steriade M; Sejnowski TJ
    Cereb Cortex; 2005 Jun; 15(6):834-45. PubMed ID: 15483049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emergence of resonances in neural systems: the interplay between adaptive threshold and short-term synaptic plasticity.
    Mejias JF; Torres JJ
    PLoS One; 2011 Mar; 6(3):e17255. PubMed ID: 21408148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and maintenance of neuronal assemblies through synaptic plasticity.
    Litwin-Kumar A; Doiron B
    Nat Commun; 2014 Nov; 5():5319. PubMed ID: 25395015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
    Kitano K; Fukai T
    J Comput Neurosci; 2007 Oct; 23(2):237-50. PubMed ID: 17415629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragility in dynamic networks: application to neural networks in the epileptic cortex.
    Sritharan D; Sarma SV
    Neural Comput; 2014 Oct; 26(10):2294-327. PubMed ID: 25058705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks.
    Renart A; Song P; Wang XJ
    Neuron; 2003 May; 38(3):473-85. PubMed ID: 12741993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.
    Puccini GD; Sanchez-Vives MV; Compte A
    PLoS Comput Biol; 2007 May; 3(5):e82. PubMed ID: 17500584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons.
    Bayati M; Valizadeh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011925. PubMed ID: 23005470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of cortical neuronal network in vitro: modeling and analysis.
    Lai PY; Jia LC; Chan CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051906. PubMed ID: 16802966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring.
    Miner D; Triesch J
    PLoS Comput Biol; 2016 Feb; 12(2):e1004759. PubMed ID: 26866369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic depression and cortical gain control.
    Abbott LF; Varela JA; Sen K; Nelson SB
    Science; 1997 Jan; 275(5297):220-4. PubMed ID: 8985017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.