BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21897028)

  • 1. Formation of 4-keto-D-aldopentoses and 4-pentulosonates (4-keto-D-pentonates) with unidentified membrane-bound enzymes from acetic acid bacteria.
    Adachi O; Hours RA; Shinagawa E; Akakabe Y; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2011; 75(9):1801-6. PubMed ID: 21897028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria.
    Adachi O; Hours RA; Shinagawa E; Akakabe Y; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2011; 75(12):2418-20. PubMed ID: 22146735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose.
    Ano Y; Hours RA; Akakabe Y; Kataoka N; Yakushi T; Matsushita K; Adachi O
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):411-418. PubMed ID: 27849146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single membrane-bound enzyme catalyzes the conversion of 2,5-diketo-d-gluconate to 4-keto-d-arabonate in d-glucose oxidative fermentation by Gluconobacter oxydans NBRC 3292.
    Tazoe M; Oishi H; Kobayashi S; Hoshino T
    Biosci Biotechnol Biochem; 2016 Aug; 80(8):1505-12. PubMed ID: 27010909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New developments in oxidative fermentation.
    Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pentose oxidation by acetic acid bacteria led to a finding of membrane-bound purine nucleosidase.
    Adachi O; Hours RA; Akakabe Y; Shinagawa E; Ano Y; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2013; 77(5):1131-3. PubMed ID: 23649247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.
    Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K
    Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of 4-keto-D-arabonate by oxidative fermentation with newly isolated Gluconacetobacter liquefaciens.
    Adachi O; Hours RA; Akakabe Y; Tanasupawat S; Yukphan P; Shinagawa E; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2010; 74(12):2555-8. PubMed ID: 21150092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Xylo-3-hexulose, a new rare sugar produced by the action of acetic acid bacteria on galactitol, an exception to Bertrand Hudson's rule.
    Xu Y; Chi P; Lv J; Bilal M; Cheng H
    Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129740. PubMed ID: 32956752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain.
    Salusjärvi T; Povelainen M; Hvorslev N; Eneyskaya EV; Kulminskaya AA; Shabalin KA; Neustroev KN; Kalkkinen N; Miasnikov AN
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):306-14. PubMed ID: 15060755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses.
    Adachi O; Fujii Y; Ghaly MF; Toyama H; Shinagawa E; Matsushita K
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2755-62. PubMed ID: 11826974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans.
    Merfort M; Herrmann U; Bringer-Meyer S; Sahm H
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):443-51. PubMed ID: 16820953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species.
    Matsushita K; Fujii Y; Ano Y; Toyama H; Shinjoh M; Tomiyama N; Miyazaki T; Sugisawa T; Hoshino T; Adachi O
    Appl Environ Microbiol; 2003 Apr; 69(4):1959-66. PubMed ID: 12676670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans.
    Ano Y; Shinagawa E; Adachi O; Toyama H; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2011; 75(3):586-9. PubMed ID: 21389606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp.
    Yakushi T; Terada Y; Ozaki S; Kataoka N; Akakabe Y; Adachi O; Matsutani M; Matsushita K
    Appl Microbiol Biotechnol; 2018 Apr; 102(7):3159-3171. PubMed ID: 29468297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus.
    Kataoka N; Matsutani M; Yakushi T; Matsushita K
    Appl Environ Microbiol; 2015 May; 81(10):3552-60. PubMed ID: 25769838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New quinoproteins in oxidative fermentation.
    Adachi O; Moonmangmee D; Shinagawa E; Toyama H; Yamada M; Matsushita K
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):10-7. PubMed ID: 12686101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans.
    Hölscher T; Schleyer U; Merfort M; Bringer-Meyer S; Görisch H; Sahm H
    J Mol Microbiol Biotechnol; 2009; 16(1-2):6-13. PubMed ID: 18957858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.