These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21897039)

  • 1. Functional compounds in fermented buckwheat sprouts.
    Maejima Y; Nakatsugawa H; Ichida D; Maejima M; Aoyagi Y; Maoka T; Etoh H
    Biosci Biotechnol Biochem; 2011; 75(9):1708-12. PubMed ID: 21897039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An angiotensin-I converting enzyme inhibitor from buckwheat (Fagopyrum esculentum Moench) flour.
    Aoyagi Y
    Phytochemistry; 2006 Mar; 67(6):618-21. PubMed ID: 16458941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.
    Elkhtab E; El-Alfy M; Shenana M; Mohamed A; Yousef AE
    J Dairy Sci; 2017 Dec; 100(12):9508-9520. PubMed ID: 28964516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentation responses and in vitro radical scavenging activities of Fagopyrum esculentum.
    Gandhi A; Dey G
    Int J Food Sci Nutr; 2013 Feb; 64(1):53-7. PubMed ID: 22849353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent production of angiotensin I-converting enzyme inhibitors from buckwheat protein.
    Li CH; Matsui T; Matsumoto K; Yamasaki R; Kawasaki T
    J Pept Sci; 2002 Jun; 8(6):267-74. PubMed ID: 12093003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotianamine is a novel angiotensin-converting enzyme 2 inhibitor in soybean.
    Takahashi S; Yoshiya T; Yoshizawa-Kumagaye K; Sugiyama T
    Biomed Res; 2015; 36(3):219-24. PubMed ID: 26106051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours.
    Zieliński H; Szawara-Nowak D; Bączek N; Wronkowska M
    Food Chem; 2019 Jan; 271():291-297. PubMed ID: 30236680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products.
    Dewan S; Tamang JP
    Antonie Van Leeuwenhoek; 2007 Oct; 92(3):343-52. PubMed ID: 17562218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in antioxidant activity, angiotensin-converting enzyme inhibitory activity and in vitro cellular properties of fermented pepino milk by Lactobacillus strains containing the glutamate decarboxylase gene.
    Chiu TH; Tsai SJ; Wu TY; Fu SC; Hwang YT
    J Sci Food Agric; 2013 Mar; 93(4):859-66. PubMed ID: 22821435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs.
    Moroni AV; Arendt EK; Dal Bello F
    Food Microbiol; 2011 May; 28(3):497-502. PubMed ID: 21356457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts.
    Koyama M; Naramoto K; Nakajima T; Aoyama T; Watanabe M; Nakamura K
    J Agric Food Chem; 2013 Mar; 61(12):3013-21. PubMed ID: 23432021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro antioxidant and angiotensin-converting enzyme inhibitory activity of fermented milk with different culture combinations.
    Li SN; Tang SH; He Q; Hu JX; Zheng J
    J Dairy Sci; 2020 Feb; 103(2):1120-1130. PubMed ID: 31759585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo.
    Fuglsang A; Rattray FP; Nilsson D; Nyborg NC
    Antonie Van Leeuwenhoek; 2003; 83(1):27-34. PubMed ID: 12755477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of fermentation on antioxidant and hypolipidemic properties of maifanite mineral water-cultured common buckwheat sprouts.
    Chen T; Piao M; Ehsanur Rahman SM; Zhang L; Deng Y
    Food Chem; 2020 Aug; 321():126741. PubMed ID: 32276146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of cooking and fermentation by lactic acid bacteria on phenolic profile of quinoa and buckwheat seeds.
    Rocchetti G; Miragoli F; Zacconi C; Lucini L; Rebecchi A
    Food Res Int; 2019 May; 119():886-894. PubMed ID: 30884729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anthocyanin compound in buckwheat sprouts and its contribution to antioxidant capacity.
    Watanabe M
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):579-82. PubMed ID: 17284830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry-fermented salchichón and chorizo sausages.
    Benito MJ; Martín A; Aranda E; Pérez-Nevado F; Ruiz-Moyano S; Córdoba MG
    J Food Sci; 2007 Aug; 72(6):M193-201. PubMed ID: 17995686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood pressure-lowering peptides from neo-fermented buckwheat sprouts: a new approach to estimating ACE-inhibitory activity.
    Koyama M; Hattori S; Amano Y; Watanabe M; Nakamura K
    PLoS One; 2014; 9(9):e105802. PubMed ID: 25222748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum moench) buckwheat sprouts.
    Liu CL; Chen YS; Yang JH; Chiang BH
    J Agric Food Chem; 2008 Jan; 56(1):173-8. PubMed ID: 18072736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.