These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21897123)

  • 1. Revealing plant defense signaling: getting more sophisticated with phosphoproteomics.
    Xing T; Laroche A
    Plant Signal Behav; 2011 Oct; 6(10):1469-74. PubMed ID: 21897123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions.
    Xing T; Ouellet T; Miki BL
    Trends Plant Sci; 2002 May; 7(5):224-30. PubMed ID: 11992828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteomics: Protein Phosphorylation in Regulation of Seed Germination and Plant Growth.
    Yin X; Wang X; Komatsu S
    Curr Protein Pept Sci; 2018 Feb; 19(4):401-412. PubMed ID: 28190389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant phosphoproteomics: an update.
    Kersten B; Agrawal GK; Durek P; Neigenfind J; Schulze W; Walther D; Rakwal R
    Proteomics; 2009 Feb; 9(4):964-88. PubMed ID: 19212952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomic analysis of induced resistance reveals activation of signal transduction processes by beneficial and pathogenic interaction in grapevine.
    Perazzolli M; Palmieri MC; Matafora V; Bachi A; Pertot I
    J Plant Physiol; 2016 May; 195():59-72. PubMed ID: 27010348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative plant phosphoproteomics.
    Kline-Jonakin KG; Barrett-Wilt GA; Sussman MR
    Curr Opin Plant Biol; 2011 Oct; 14(5):507-11. PubMed ID: 21764629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoproteomic Analysis of Plant Membranes.
    Xi L; Schulze WX; Wu XN
    Methods Mol Biol; 2021; 2200():441-451. PubMed ID: 33175392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 14-3-3 proteins in plant-pathogen interactions.
    Lozano-DurĂ¡n R; Robatzek S
    Mol Plant Microbe Interact; 2015 May; 28(5):511-8. PubMed ID: 25584723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Msp1-Induced Signaling Components in Rice Leaves by Integrated Proteomic and Phosphoproteomic Analysis.
    Gupta R; Min CW; Kim YJ; Kim ST
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shotguns in the front line: phosphoproteomics in plants.
    Nakagami H; Sugiyama N; Ishihama Y; Shirasu K
    Plant Cell Physiol; 2012 Jan; 53(1):118-24. PubMed ID: 22039104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers.
    Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P
    Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Plant Kinase Substrates Based on Kinase Assay-Linked Phosphoproteomics.
    Hsu CC; Arrington JV; Xue L; Tao WA
    Methods Mol Biol; 2017; 1636():327-335. PubMed ID: 28730489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoproteomics Analysis for Probing Plant Stress Tolerance.
    Rampitsch C
    Methods Mol Biol; 2017; 1631():181-193. PubMed ID: 28735398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking development to defense: auxin in plant-pathogen interactions.
    Kazan K; Manners JM
    Trends Plant Sci; 2009 Jul; 14(7):373-82. PubMed ID: 19559643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Databases for plant phosphoproteomics.
    Schulze WX; Yao Q; Xu D
    Methods Mol Biol; 2015; 1306():207-16. PubMed ID: 25930705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent insights into plant-virus interactions through proteomic analysis.
    Di Carli M; Benvenuto E; Donini M
    J Proteome Res; 2012 Oct; 11(10):4765-80. PubMed ID: 22954327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAPK cascades in plant disease resistance signaling.
    Meng X; Zhang S
    Annu Rev Phytopathol; 2013; 51():245-66. PubMed ID: 23663002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Soybean Roots' Tolerances to Salinity Revealed by Proteomic and Phosphoproteomic Comparisons Between Two Cultivars.
    Pi E; Qu L; Hu J; Huang Y; Qiu L; Lu H; Jiang B; Liu C; Peng T; Zhao Y; Wang H; Tsai SN; Ngai S; Du L
    Mol Cell Proteomics; 2016 Jan; 15(1):266-88. PubMed ID: 26407991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant phosphoproteomics: a long road ahead.
    Kersten B; Agrawal GK; Iwahashi H; Rakwal R
    Proteomics; 2006 Oct; 6(20):5517-28. PubMed ID: 16991200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of phosphorylated proteins.
    Rossignol M
    Curr Opin Plant Biol; 2006 Oct; 9(5):538-43. PubMed ID: 16877032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.