These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Rounded multi-level microchannels with orifices made in one exposure enable aqueous two-phase system droplet microfluidics. Lai D; Frampton JP; Sriram H; Takayama S Lab Chip; 2011 Oct; 11(20):3551-4. PubMed ID: 21892481 [TBL] [Abstract][Full Text] [Related]
24. Tunable particle/cell separation across aqueous two-phase system interface by electric pulse in microfluidics. Li M; Li D; Song Y; Li D J Colloid Interface Sci; 2022 Apr; 612():23-34. PubMed ID: 34974255 [TBL] [Abstract][Full Text] [Related]
25. Pressure balance at the liquid-liquid interface of micro countercurrent flows in microchips. Aota A; Hibara A; Kitamori T Anal Chem; 2007 May; 79(10):3919-24. PubMed ID: 17439241 [TBL] [Abstract][Full Text] [Related]
26. Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements. Ahmed T; Yamanishi C; Kojima T; Takayama S Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):231-255. PubMed ID: 33950741 [TBL] [Abstract][Full Text] [Related]
27. Solvent systems for countercurrent chromatography: an aqueous two phase liquid system based on a room temperature ionic liquid. Ruiz-Angel MJ; Pino V; Carda-Broch S; Berthod A J Chromatogr A; 2007 Jun; 1151(1-2):65-73. PubMed ID: 17166506 [TBL] [Abstract][Full Text] [Related]
32. Microscale determination of aqueous two phase system binodals by droplet dehydration in oil. Kojima T; Takayama S Anal Chem; 2013 May; 85(10):5213-8. PubMed ID: 23614634 [TBL] [Abstract][Full Text] [Related]
33. Rotavirus-like particles primary recovery from insect cells in aqueous two-phase systems. Benavides J; Mena JA; Cisneros-Ruiz M; Ramírez OT; Palomares LA; Rito-Palomares M J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 842(1):48-57. PubMed ID: 16725390 [TBL] [Abstract][Full Text] [Related]
34. Microfluidic directed formation of liposomes of controlled size. Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256 [TBL] [Abstract][Full Text] [Related]
35. Controlling Macroscopic Phase Separation of Aqueous Two-Phase Polymer Systems in Porous Media. Pereira DY; Wu CM; Lee SY; Lee E; Wu BM; Kamei DT SLAS Technol; 2019 Oct; 24(5):515-526. PubMed ID: 31361522 [TBL] [Abstract][Full Text] [Related]
36. Continuous splitting of aqueous droplets at the interface of co-flowing immiscible oil streams in a microchannel. Jayaprakash KS; Sen AK Soft Matter; 2018 Jan; 14(5):725-733. PubMed ID: 29349475 [TBL] [Abstract][Full Text] [Related]
38. Multiphase flow in microfluidic systems --control and applications of droplets and interfaces. Shui L; Eijkel JC; van den Berg A Adv Colloid Interface Sci; 2007 May; 133(1):35-49. PubMed ID: 17445759 [TBL] [Abstract][Full Text] [Related]
39. Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel. Hawkes JJ; Barber RW; Emerson DR; Coakley WT Lab Chip; 2004 Oct; 4(5):446-52. PubMed ID: 15472728 [TBL] [Abstract][Full Text] [Related]
40. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells. Theodorakakos A; Ous T; Gavaises M; Nouri JM; Nikolopoulos N; Yanagihara H J Colloid Interface Sci; 2006 Aug; 300(2):673-87. PubMed ID: 16774763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]