These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 21897985)

  • 1. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons.
    Pang Q; Zhang Y; Zhang JM; Ji V; Xu KW
    Nanoscale; 2011 Oct; 3(10):4330-8. PubMed ID: 21897985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons.
    Li Y; Zhou Z; Shen P; Chen Z
    ACS Nano; 2009 Jul; 3(7):1952-8. PubMed ID: 19555066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-doped zigzag boron nitride nanoribbons with widely tunable electronic and magnetic properties: insight from density functional calculations.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2010 Mar; 12(10):2313-20. PubMed ID: 20449344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of B/N co-doping on the stability and electronic structure of single-walled carbon nanotubes by first-principles theory.
    Li YT; Chen TC
    Nanotechnology; 2009 Sep; 20(37):375705. PubMed ID: 19706947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory of nitrogen doping of carbon nanoribbons: edge effects.
    Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J
    J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons.
    Liu ZM; Zhu Y; Yang ZQ
    J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Realizing semiconductor-half-metal transition in zigzag graphene nanoribbons supported on hybrid fluorographene-graphane nanoribbons.
    Tang S; Cao X
    Phys Chem Chem Phys; 2014 Nov; 16(42):23214-23. PubMed ID: 25254929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferromagnetism/antiferromagnetism transition between semihydrogenated and fully-aminated single-wall carbon nanotubes.
    Deng Q; Zhao L; Luo Y; Zhang M; Jing L; Zhao Y
    Nanoscale; 2011 Sep; 3(9):3743-6. PubMed ID: 21804988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The properties of BiSb nanoribbons from first-principles calculations.
    Lv HY; Liu HJ; Tan XJ; Pan L; Wen YW; Shi J; Tang XF
    Nanoscale; 2012 Jan; 4(2):511-7. PubMed ID: 22101571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic and electronic properties of α-graphyne nanoribbons.
    Yue Q; Chang S; Kang J; Tan J; Qin S; Li J
    J Chem Phys; 2012 Jun; 136(24):244702. PubMed ID: 22755594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable electronic properties of partially edge-hydrogenated armchair boron-nitrogen-carbon nanoribbons.
    Alaal N; Medhekar N; Shukla A
    Phys Chem Chem Phys; 2018 Apr; 20(15):10345-10358. PubMed ID: 29610823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons.
    Chen W; Li Y; Yu G; Li CZ; Zhang SB; Zhou Z; Chen Z
    J Am Chem Soc; 2010 Feb; 132(5):1699-705. PubMed ID: 20085366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the electronic properties of armchair carbon nanoribbons by a selective boron doping.
    Navarro-Santos P; Ricardo-Chávez JL; Reyes-Reyes M; Rivera JL; López-Sandoval R
    J Phys Condens Matter; 2010 Dec; 22(50):505302. PubMed ID: 21406793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the electronic properties and spin polarization of 2H VS
    Zhao R; Wang T; Zhao M; Xia C; An Y; Dai X
    Phys Chem Chem Phys; 2019 Aug; 21(33):18211-18218. PubMed ID: 31389926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band-gap engineering via tailored line defects in boron-nitride nanoribbons, sheets, and nanotubes.
    Li X; Wu X; Zeng XC; Yang J
    ACS Nano; 2012 May; 6(5):4104-12. PubMed ID: 22482995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced ferromagnetism in one-side semihydrogenated silicene and germanene.
    Wang XQ; Li HD; Wang JT
    Phys Chem Chem Phys; 2012 Mar; 14(9):3031-6. PubMed ID: 22286024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.