These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
10. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization of xylitol dehydrogenase with l-arabitol dehydrogenase activity from the newly isolated pentose-fermenting yeast Meyerozyma caribbica 5XY2. Sukpipat W; Komeda H; Prasertsan P; Asano Y J Biosci Bioeng; 2017 Jan; 123(1):20-27. PubMed ID: 27506274 [TBL] [Abstract][Full Text] [Related]
12. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100 [TBL] [Abstract][Full Text] [Related]
13. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Martins GM; Bocchini-Martins DA; Bezzerra-Bussoli C; Pagnocca FC; Boscolo M; Monteiro DA; Silva RD; Gomes E Braz J Microbiol; 2018; 49(1):162-168. PubMed ID: 28888830 [TBL] [Abstract][Full Text] [Related]
14. Ethanol production from wheat straw by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture in batch and continuous system. Karagöz P; Özkan M Bioresour Technol; 2014 Apr; 158():286-93. PubMed ID: 24614063 [TBL] [Abstract][Full Text] [Related]
15. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. Ruchala J; Sibirny AA FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044 [TBL] [Abstract][Full Text] [Related]
16. Fermentation profiles of the yeast Brettanomyces bruxellensis in d-xylose and l-arabinose aiming its application as a second-generation ethanol producer. da Silva JM; Ribeiro KC; Teles GH; Ribeiro E; de Morais Junior MA; de Barros Pita W Yeast; 2020 Nov; 37(11):597-608. PubMed ID: 32889766 [TBL] [Abstract][Full Text] [Related]
17. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Wisselink HW; Toirkens MJ; Wu Q; Pronk JT; van Maris AJ Appl Environ Microbiol; 2009 Feb; 75(4):907-14. PubMed ID: 19074603 [TBL] [Abstract][Full Text] [Related]
18. Candida arabinofermentans, a new L-arabinose fermenting yeast. Kurtzman CP; Dien BS Antonie Van Leeuwenhoek; 1998 Nov; 74(4):237-43. PubMed ID: 10081583 [TBL] [Abstract][Full Text] [Related]
19. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747 [TBL] [Abstract][Full Text] [Related]
20. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest. Cadete RM; Melo MA; Dussán KJ; Rodrigues RC; Silva SS; Zilli JE; Vital MJ; Gomes FC; Lachance MA; Rosa CA PLoS One; 2012; 7(8):e43135. PubMed ID: 22912807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]