BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21898223)

  • 21. Unraveling complex interplay between heat shock factor 1 and 2 splicing isoforms.
    Lecomte S; Reverdy L; Le Quément C; Le Masson F; Amon A; Le Goff P; Michel D; Christians E; Le Dréan Y
    PLoS One; 2013; 8(2):e56085. PubMed ID: 23418516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation.
    Shinkawa T; Tan K; Fujimoto M; Hayashida N; Yamamoto K; Takaki E; Takii R; Prakasam R; Inouye S; Mezger V; Nakai A
    Mol Biol Cell; 2011 Oct; 22(19):3571-83. PubMed ID: 21813737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription.
    Sistonen L; Sarge KD; Morimoto RI
    Mol Cell Biol; 1994 Mar; 14(3):2087-99. PubMed ID: 8114740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond.
    Pirkkala L; Nykänen P; Sistonen L
    FASEB J; 2001 May; 15(7):1118-31. PubMed ID: 11344080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HSF4 is required for normal cell growth and differentiation during mouse lens development.
    Fujimoto M; Izu H; Seki K; Fukuda K; Nishida T; Yamada S; Kato K; Yonemura S; Inouye S; Nakai A
    EMBO J; 2004 Oct; 23(21):4297-306. PubMed ID: 15483628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.
    Sarge KD; Murphy SP; Morimoto RI
    Mol Cell Biol; 1993 Mar; 13(3):1392-407. PubMed ID: 8441385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification, tissue distribution and characterization of two heat shock factors (HSFs) in goldfish (Carassius auratus).
    Kim SS; Chang Z; Park JS
    Fish Shellfish Immunol; 2015 Apr; 43(2):375-86. PubMed ID: 25592877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation.
    Mahat DB; Salamanca HH; Duarte FM; Danko CG; Lis JT
    Mol Cell; 2016 Apr; 62(1):63-78. PubMed ID: 27052732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1.
    Ostling P; Björk JK; Roos-Mattjus P; Mezger V; Sistonen L
    J Biol Chem; 2007 Mar; 282(10):7077-86. PubMed ID: 17213196
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The heat shock factor family and adaptation to proteotoxic stress.
    Fujimoto M; Nakai A
    FEBS J; 2010 Oct; 277(20):4112-25. PubMed ID: 20945528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HSF3 is a major heat shock responsive factor duringchicken embryonic development.
    Kawazoe Y; Tanabe M; Sasai N; Nagata K; Nakai A
    Eur J Biochem; 1999 Oct; 265(2):688-97. PubMed ID: 10504401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology.
    Roos-Mattjus P; Sistonen L
    FEBS J; 2022 Dec; 289(24):7710-7725. PubMed ID: 34478606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of heat shock genes is not necessary for protection by heat shock transcription factor 1 against cell death due to a single exposure to high temperatures.
    Inouye S; Katsuki K; Izu H; Fujimoto M; Sugahara K; Yamada S; Shinkai Y; Oka Y; Katoh Y; Nakai A
    Mol Cell Biol; 2003 Aug; 23(16):5882-95. PubMed ID: 12897157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determine genetic variations in heat shock factor gene family (HSFs) and study their effect on the functional and structural characterization of protein in Tali goat.
    Rezvannejad E; Mousavizadeh SA; Lotfi S; Kargar N
    Anim Biotechnol; 2023 Apr; 34(2):236-245. PubMed ID: 34370605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing.
    Tanabe M; Sasai N; Nagata K; Liu XD; Liu PC; Thiele DJ; Nakai A
    J Biol Chem; 1999 Sep; 274(39):27845-56. PubMed ID: 10488131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heat shock factors at a crossroad between stress and development.
    Akerfelt M; Trouillet D; Mezger V; Sistonen L
    Ann N Y Acad Sci; 2007 Oct; 1113():15-27. PubMed ID: 17483205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells.
    Vihervaara A; Sergelius C; Vasara J; Blom MA; Elsing AN; Roos-Mattjus P; Sistonen L
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):E3388-97. PubMed ID: 23959860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.