These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21898522)

  • 21. A Bayesian hierarchical model for the estimation of two incomplete surveillance data sets.
    Buenconsejo J; Fish D; Childs JE; Holford TR
    Stat Med; 2008 Jul; 27(17):3269-85. PubMed ID: 18314934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covariate adjusted mixture models and disease mapping with the program DismapWin.
    Schlattmann P; Dietz E; Böhning D
    Stat Med; 1996 Apr 15-May 15; 15(7-9):919-29. PubMed ID: 8861160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Bayesian latent process spatiotemporal regression model for areal count data.
    Utazi CE; Afuecheta EO; Nnanatu CC
    Spat Spatiotemporal Epidemiol; 2018 Jun; 25():25-37. PubMed ID: 29751890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hierarchical model for real-time monitoring of variation in risk of non-specific gastrointestinal infections.
    Kaimi I; Diggle PJ
    Epidemiol Infect; 2011 Dec; 139(12):1854-62. PubMed ID: 21303589
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Demographic characterization and spatial cluster analysis of human Salmonella 1,4,[5],12:i:- infections in Portugal: A 10year study.
    Seixas R; Nunes T; Machado J; Tavares L; Owen SP; Bernardo F; Oliveira M
    J Infect Public Health; 2018; 11(2):178-182. PubMed ID: 28673763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How does Poisson kriging compare to the popular BYM model for mapping disease risks?
    Goovaerts P; Gebreab S
    Int J Health Geogr; 2008 Feb; 7():6. PubMed ID: 18248676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of neighborhood level socioeconomic characteristics in Salmonella infections in Michigan (1997-2007): assessment using geographic information system.
    Younus M; Hartwick E; Siddiqi AA; Wilkins M; Davies HD; Rahbar M; Funk J; Saeed M
    Int J Health Geogr; 2007 Dec; 6():56. PubMed ID: 18093323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving resolution of public health surveillance for human Salmonella enterica serovar Typhimurium infection: 3 years of prospective multiple-locus variable-number tandem-repeat analysis (MLVA).
    Sintchenko V; Wang Q; Howard P; Ha CW; Kardamanidis K; Musto J; Gilbert GL
    BMC Infect Dis; 2012 Mar; 12():78. PubMed ID: 22462487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A spatio-temporal absorbing state model for disease and syndromic surveillance.
    Heaton MJ; Banks DL; Zou J; Karr AF; Datta G; Lynch J; Vera F
    Stat Med; 2012 Aug; 31(19):2123-36. PubMed ID: 22388709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring changes in spatio-temporal maps of disease.
    Vidal Rodeiro CL; Lawson AB
    Biom J; 2006 Jun; 48(3):463-80. PubMed ID: 16845909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Bayesian spatio-temporal method for disease outbreak detection.
    Jiang X; Cooper GF
    J Am Med Inform Assoc; 2010; 17(4):462-71. PubMed ID: 20595315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonparametric intensity bounds for the delineation of spatial clusters.
    Oliveira FL; Duczmal LH; Cançado AL; Tavares R
    Int J Health Geogr; 2011 Jan; 10():1. PubMed ID: 21214924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Issues in applied statistics for public health bioterrorism surveillance using multiple data streams: research needs.
    Rolka H; Burkom H; Cooper GF; Kulldorff M; Madigan D; Wong WK
    Stat Med; 2007 Apr; 26(8):1834-56. PubMed ID: 17221940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A descriptive analysis of the spatio-temporal distribution of enteric diseases in New Brunswick, Canada.
    Valcour JE; Charron DF; Berke O; Wilson JB; Edge T; Waltner-Toews D
    BMC Public Health; 2016 Mar; 16():204. PubMed ID: 26932766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.
    Conesa D; Martínez-Beneito MA; Amorós R; López-Quílez A
    Stat Methods Med Res; 2015 Apr; 24(2):206-23. PubMed ID: 21873301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A CUSUM framework for detection of space-time disease clusters using scan statistics.
    Sonesson C
    Stat Med; 2007 Nov; 26(26):4770-89. PubMed ID: 17476652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the impact of a small number of areas on spatial estimation.
    Aswi A; Cramb S; Duncan E; Mengersen K
    Int J Health Geogr; 2020 Sep; 19(1):39. PubMed ID: 32977803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Statistical methods for geographical surveillance in veterinary epidemiology.
    Biggeri A; Catelan D; Rinaldi L; Dreassi E; Lagazio C; Cringoli G
    Parassitologia; 2006 Jun; 48(1-2):73-6. PubMed ID: 16881401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disease mapping and regression with count data in the presence of overdispersion and spatial autocorrelation: a Bayesian model averaging approach.
    Mohebbi M; Wolfe R; Forbes A
    Int J Environ Res Public Health; 2014 Jan; 11(1):883-902. PubMed ID: 24413702
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bayesian approach for analyzing zero-inflated clustered count data with dispersion.
    Choo-Wosoba H; Gaskins J; Levy S; Datta S
    Stat Med; 2018 Feb; 37(5):801-812. PubMed ID: 29108124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.