These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 21898524)
1. Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model. Sattar A; Weissfeld LA; Molenberghs G Stat Med; 2011 Nov; 30(27):3167-80. PubMed ID: 21898524 [TBL] [Abstract][Full Text] [Related]
2. Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out. Kurland BF; Heagerty PJ Stat Med; 2004 Sep; 23(17):2673-95. PubMed ID: 15316952 [TBL] [Abstract][Full Text] [Related]
3. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Albert PS; Follmann DA Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452 [TBL] [Abstract][Full Text] [Related]
4. Multiple imputation for left-censored biomarker data based on Gibbs sampling method. Lee M; Kong L; Weissfeld L Stat Med; 2012 Jul; 31(17):1838-48. PubMed ID: 22359320 [TBL] [Abstract][Full Text] [Related]
5. Robustness of a parametric model for informatively censored bivariate longitudinal data under misspecification of its distributional assumptions: A simulation study. Pantazis N; Touloumi G Stat Med; 2007 Dec; 26(30):5473-85. PubMed ID: 18058854 [TBL] [Abstract][Full Text] [Related]
6. A copula model for repeated measurements with non-ignorable non-monotone missing outcome. Shen C; Weissfeld L Stat Med; 2006 Jul; 25(14):2427-40. PubMed ID: 16143999 [TBL] [Abstract][Full Text] [Related]
7. [Analysis of longitudinal Gaussian data with missing data on the response variable]. Jacqmin-Gadda H; Commenges D; Dartigues J Rev Epidemiol Sante Publique; 1999 Dec; 47(6):525-34. PubMed ID: 10673586 [TBL] [Abstract][Full Text] [Related]
8. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
9. An index of local sensitivity to non-ignorability for multivariate longitudinal mixed data with potential non-random dropout. Mahabadi SE; Ganjali M Stat Med; 2010 Jul; 29(17):1779-92. PubMed ID: 20658547 [TBL] [Abstract][Full Text] [Related]
10. A local sensitivity analysis approach to longitudinal non-Gaussian data with non-ignorable dropout. Xie H Stat Med; 2008 Jul; 27(16):3155-77. PubMed ID: 17948917 [TBL] [Abstract][Full Text] [Related]
11. Analysis of change in the presence of informative censoring: application to a longitudinal clinical trial of progressive renal disease. Schluchter MD; Greene T; Beck GJ Stat Med; 2001 Apr; 20(7):989-1007. PubMed ID: 11276031 [TBL] [Abstract][Full Text] [Related]
12. A random-effects Markov transition model for Poisson-distributed repeated measures with non-ignorable missing values. Li J; Yang X; Wu Y; Shoptaw S Stat Med; 2007 May; 26(12):2519-32. PubMed ID: 17106918 [TBL] [Abstract][Full Text] [Related]
13. A multistate Markov chain model for longitudinal, categorical quality-of-life data subject to non-ignorable missingness. Cole BF; Bonetti M; Zaslavsky AM; Gelber RD Stat Med; 2005 Aug; 24(15):2317-34. PubMed ID: 15977292 [TBL] [Abstract][Full Text] [Related]
14. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Preisser JS; Lohman KK; Rathouz PJ Stat Med; 2002 Oct; 21(20):3035-54. PubMed ID: 12369080 [TBL] [Abstract][Full Text] [Related]
15. Slope estimation in the presence of informative right censoring: modeling the number of observations as a geometric random variable. Mori M; Woolson RF; Woodworth GG Biometrics; 1994 Mar; 50(1):39-50. PubMed ID: 8086614 [TBL] [Abstract][Full Text] [Related]
16. On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out. Demirtas H; Schafer JL Stat Med; 2003 Aug; 22(16):2553-75. PubMed ID: 12898544 [TBL] [Abstract][Full Text] [Related]
17. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates. Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018 [TBL] [Abstract][Full Text] [Related]
18. Protecting against nonrandomly missing data in longitudinal studies. Brown CH Biometrics; 1990 Mar; 46(1):143-55. PubMed ID: 2350568 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity analysis for the estimation of rates of change with non-ignorable drop-out: an application to a randomized clinical trial of the vitamin D3. Matsuyama Y Stat Med; 2003 Mar; 22(5):811-27. PubMed ID: 12587107 [TBL] [Abstract][Full Text] [Related]
20. A transition model for quality-of-life data with non-ignorable non-monotone missing data. Liao K; Freres DR; Troxel AB Stat Med; 2012 Dec; 31(28):3444-66. PubMed ID: 22826030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]