BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 21898832)

  • 21. Unexpected N-acetylation of capreomycin by mycobacterial Eis enzymes.
    Houghton JL; Green KD; Pricer RE; Mayhoub AS; Garneau-Tsodikova S
    J Antimicrob Chemother; 2013 Apr; 68(4):800-5. PubMed ID: 23233486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A random sequential mechanism of aminoglycoside acetylation by Mycobacterium tuberculosis Eis protein.
    Tsodikov OV; Green KD; Garneau-Tsodikova S
    PLoS One; 2014; 9(4):e92370. PubMed ID: 24699000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Could mycobacterial MelF protein (Rv1936) be used as a potential drug target?
    Mehta PK; Dharra R; Kulharia M
    Future Microbiol; 2018 Sep; 13():1211-1214. PubMed ID: 30238773
    [No Abstract]   [Full Text] [Related]  

  • 24. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia.
    Bauskenieks M; Pole I; Skenders G; Jansone I; Broka L; Nodieva A; Ozere I; Kalvisa A; Ranka R; Baumanis V
    Diagn Microbiol Infect Dis; 2015 Mar; 81(3):177-82. PubMed ID: 25557624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery and development of inhibitors of acetyltransferase Eis to combat Mycobacterium tuberculosis.
    Pang AH; Green KD; Tsodikov OV; Garneau-Tsodikova S
    Methods Enzymol; 2023; 690():369-396. PubMed ID: 37858535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mycobacterium tuberculosis Low Molecular Weight Phosphatases (MPtpA and MPtpB): From Biological Insight to Inhibitors.
    Fanzani L; Porta F; Meneghetti F; Villa S; Gelain A; Lucarelli AP; Parisini E
    Curr Med Chem; 2015; 22(27):3110-32. PubMed ID: 26264920
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fragment-based discovery of selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA.
    Rawls KA; Lang PT; Takeuchi J; Imamura S; Baguley TD; Grundner C; Alber T; Ellman JA
    Bioorg Med Chem Lett; 2009 Dec; 19(24):6851-4. PubMed ID: 19889539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A consequence of drug targeting of aminoacyl-tRNA synthetases in Mycobacteriumtuberculosis.
    Ndagi U; Kumalo HM; Mhlongo NN
    Chem Biol Drug Des; 2021 Sep; 98(3):421-434. PubMed ID: 33993612
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetylene-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme.
    Senior SJ; Illarionov PA; Gurcha SS; Campbell IB; Schaeffer ML; Minnikin DE; Besra GS
    Bioorg Med Chem Lett; 2004 Jan; 14(2):373-6. PubMed ID: 14698162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ESI-MS assay of M. tuberculosis cell wall antigen 85 enzymes permits substrate profiling and design of a mechanism-based inhibitor.
    Barry CS; Backus KM; Barry CE; Davis BG
    J Am Chem Soc; 2011 Aug; 133(34):13232-5. PubMed ID: 21776980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting Aminoglycoside Acetyltransferase Activity of Mycobacterium tuberculosis (H37Rv) Derived Eis (Enhanced Intracellular Survival) Protein with Quercetin.
    Radhakrishnan L; Dani R; Navabshan I; Jamal S; Ahmed N
    Protein J; 2024 Feb; 43(1):12-23. PubMed ID: 37932619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural biology and biochemistry of cytochrome P450 systems in Mycobacterium tuberculosis.
    McLean KJ; Munro AW
    Drug Metab Rev; 2008; 40(3):427-46. PubMed ID: 18642141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidation of Mycobacterium tuberculosis type II dehydroquinase inhibitors using a fragment elaboration strategy.
    Tran AT; West NP; Britton WJ; Payne RJ
    ChemMedChem; 2012 Jun; 7(6):1031-43. PubMed ID: 22461418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studying aminoglycoside modification by the acetyltransferase class of resistance-causing enzymes via microarray.
    Barrett OJ; Pushechnikov A; Wu M; Disney MD
    Carbohydr Res; 2008 Nov; 343(17):2924-31. PubMed ID: 18774127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shortening the treatment of tuberculosis.
    Mitchison DA
    Nat Biotechnol; 2005 Feb; 23(2):187-8. PubMed ID: 15696148
    [No Abstract]   [Full Text] [Related]  

  • 36. New insight into the mechanism of action of and resistance to isoniazid: interaction of Mycobacterium tuberculosis enoyl-ACP reductase with INH-NADP.
    Argyrou A; Vetting MW; Blanchard JS
    J Am Chem Soc; 2007 Aug; 129(31):9582-3. PubMed ID: 17636923
    [No Abstract]   [Full Text] [Related]  

  • 37. DNA topoisomerase I and DNA gyrase as targets for TB therapy.
    Nagaraja V; Godbole AA; Henderson SR; Maxwell A
    Drug Discov Today; 2017 Mar; 22(3):510-518. PubMed ID: 27856347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of DprE1-Mediated Benzothiazinone Resistance in Mycobacterium tuberculosis.
    Foo CS; Lechartier B; Kolly GS; Boy-Röttger S; Neres J; Rybniker J; Lupien A; Sala C; Piton J; Cole ST
    Antimicrob Agents Chemother; 2016 Nov; 60(11):6451-6459. PubMed ID: 27527085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of inhibitors targeting polyketide synthase 13 of Mycobacterium tuberculosis as antituberculosis drug leads.
    Wang X; Zhao W; Wang B; Ding W; Guo H; Zhao H; Meng J; Liu S; Lu Y; Liu Y; Zhang D
    Bioorg Chem; 2021 Sep; 114():105110. PubMed ID: 34175719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone as a novel inhibitor of methionine aminopeptidases from Mycobacterium tuberculosis.
    John SF; Aniemeke E; Ha NP; Chong CR; Gu P; Zhou J; Zhang Y; Graviss EA; Liu JO; Olaleye OA
    Tuberculosis (Edinb); 2016 Dec; 101S():S73-S77. PubMed ID: 27856197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.