BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 21898842)

  • 1. Applying small molecule microarrays and resulting affinity probe cocktails for proteome profiling of mammalian cell lysates.
    Shi H; Uttamchandani M; Yao SQ
    Chem Asian J; 2011 Oct; 6(10):2803-15. PubMed ID: 21898842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for small molecule microarray-based screening for the rapid discovery of affinity-based probes.
    Shi H; Uttamchandani M; Yao SQ
    Methods Mol Biol; 2010; 669():57-68. PubMed ID: 20857357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A peptide aldehyde microarray for high-throughput profiling of cellular events.
    Wu H; Ge J; Yang PY; Wang J; Uttamchandani M; Yao SQ
    J Am Chem Soc; 2011 Feb; 133(6):1946-54. PubMed ID: 21247160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small molecule microarray-facilitated screening of affinity-based probes (AfBPs) for gamma-secretase.
    Shi H; Liu K; Xu A; Yao SQ
    Chem Commun (Camb); 2009 Sep; (33):5030-2. PubMed ID: 19668839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening of metalloproteases using small molecule microarrays.
    Uttamchandani M
    Methods Mol Biol; 2010; 632():203-19. PubMed ID: 20217580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small molecule microarrays: recent advances and applications.
    Uttamchandani M; Walsh DP; Yao SQ; Chang YT
    Curr Opin Chem Biol; 2005 Feb; 9(1):4-13. PubMed ID: 15701446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand discovery using small-molecule microarrays.
    Casalena DE; Wassaf D; Koehler AN
    Methods Mol Biol; 2012; 803():249-63. PubMed ID: 22065230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The expanding world of small molecule microarrays.
    Uttamchandani M; Yao SQ
    Methods Mol Biol; 2010; 669():1-15. PubMed ID: 20857353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achiral oligoamines as versatile tool for the development of aspartic protease inhibitors.
    Blum A; Böttcher J; Sammet B; Luksch T; Heine A; Klebe G; Diederich WE
    Bioorg Med Chem; 2008 Sep; 16(18):8574-86. PubMed ID: 18760609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel peptidyl aryl vinyl sulfones as highly potent and selective inhibitors of cathepsins L and B.
    Mendieta L; Picó A; Tarragó T; Teixidó M; Castillo M; Rafecas L; Moyano A; Giralt E
    ChemMedChem; 2010 Sep; 5(9):1556-67. PubMed ID: 20652927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of hydroxyethylamine (HEA) BACE-1 inhibitors: structure-activity relationship of the aryl region.
    Probst GD; Bowers S; Sealy JM; Stupi B; Dressen D; Jagodzinska BM; Aquino J; Gailunas A; Truong AP; Tso L; Xu YZ; Hom RK; John V; Tung JS; Pleiss MA; Tucker JA; Konradi AW; Sham HL; Jagodzinski J; Toth G; Brecht E; Yao N; Pan H; Lin M; Artis DR; Ruslim L; Bova MP; Sinha S; Yednock TA; Gauby S; Zmolek W; Quinn KP; Sauer JM
    Bioorg Med Chem Lett; 2010 Oct; 20(20):6034-9. PubMed ID: 20822903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative inhibitor fingerprinting of metalloproteases using small molecule microarrays.
    Uttamchandani M; Lee WL; Wang J; Yao SQ
    J Am Chem Soc; 2007 Oct; 129(43):13110-7. PubMed ID: 17915867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aminoethylenes: a tetrahedral intermediate isostere yielding potent inhibitors of the aspartyl protease BACE-1.
    Yang W; Lu W; Lu Y; Zhong M; Sun J; Thomas AE; Wilkinson JM; Fucini RV; Lam M; Randal M; Shi XP; Jacobs JW; McDowell RS; Gordon EM; Ballinger MD
    J Med Chem; 2006 Feb; 49(3):839-42. PubMed ID: 16451048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput synthesis of azide libraries suitable for direct "click" chemistry and in situ screening.
    Srinivasan R; Tan LP; Wu H; Yang PY; Kalesh KA; Yao SQ
    Org Biomol Chem; 2009 May; 7(9):1821-8. PubMed ID: 19590777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second generation of BACE-1 inhibitors part 3: Towards non hydroxyethylamine transition state mimetics.
    Charrier N; Clarke B; Cutler L; Demont E; Dingwall C; Dunsdon R; Hawkins J; Howes C; Hubbard J; Hussain I; Maile G; Matico R; Mosley J; Naylor A; O'Brien A; Redshaw S; Rowland P; Soleil V; Smith KJ; Sweitzer S; Theobald P; Vesey D; Walter DS; Wayne G
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3674-8. PubMed ID: 19406640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second generation of BACE-1 inhibitors part 2: Optimisation of the non-prime side substituent.
    Charrier N; Clarke B; Demont E; Dingwall C; Dunsdon R; Hawkins J; Hubbard J; Hussain I; Maile G; Matico R; Mosley J; Naylor A; O'Brien A; Redshaw S; Rowland P; Soleil V; Smith KJ; Sweitzer S; Theobald P; Vesey D; Walter DS; Wayne G
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3669-73. PubMed ID: 19477642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microarray-based enzyme profiling: Recent advances and applications (Review).
    Uttamchandani M; Moochhala S
    Biointerphases; 2010 Sep; 5(3):FA24-31. PubMed ID: 21171709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification and organelle-specific localization of orlistat-like natural-product-based probes.
    Yang PY; Liu K; Zhang C; Chen GY; Shen Y; Ngai MH; Lear MJ; Yao SQ
    Chem Asian J; 2011 Oct; 6(10):2762-75. PubMed ID: 21744505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A library of novel hydroxamic acids targeting the metallo-protease family: design, parallel synthesis and screening.
    Flipo M; Beghyn T; Charton J; Leroux VA; Deprez BP; Deprez-Poulain RF
    Bioorg Med Chem; 2007 Jan; 15(1):63-76. PubMed ID: 17070058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Next generation chemical proteomic tools for rapid enzyme profiling.
    Uttamchandani M; Lu CH; Yao SQ
    Acc Chem Res; 2009 Aug; 42(8):1183-92. PubMed ID: 19435360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.