These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 21899059)

  • 1. [Coding region of far-red fluorescent protein katushka contains a strong donor splice site].
    Gurskaia NG; Staroverov DB; Fradkov AF; Luk'ianov KA
    Bioorg Khim; 2011; 37(3):425-8. PubMed ID: 21899059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent Protein-Based Quantification of Alternative Splicing of a Target Cassette Exon in Mammalian Cells.
    Gurskaya NG; Staroverov DB; Lukyanov KA
    Methods Enzymol; 2016; 572():255-68. PubMed ID: 27241758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Intron 2 of human beta-globin in 3'-untranslated region enhances expression of chimeric genes].
    Pereverzev AP; Markina NM; Ianushevich IuG; Gorodnicheva TV; Minasian BE; Luk'ianov KA; Gurskaia NG
    Bioorg Khim; 2014; 40(3):293-6. PubMed ID: 25898735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STaQTool: Spot tracking and quantification tool for monitoring splicing of single pre-mRNA molecules in living cells.
    Rino J; de Jesus AC; Carmo-Fonseca M
    Methods; 2016 Apr; 98():143-149. PubMed ID: 26855377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for quantitative analysis of nonsense-mediated mRNA decay at the single cell level.
    Pereverzev AP; Gurskaya NG; Ermakova GV; Kudryavtseva EI; Markina NM; Kotlobay AA; Lukyanov SA; Zaraisky AG; Lukyanov KA
    Sci Rep; 2015 Jan; 5():7729. PubMed ID: 25578556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information.
    Hebsgaard SM; Korning PG; Tolstrup N; Engelbrecht J; Rouzé P; Brunak S
    Nucleic Acids Res; 1996 Sep; 24(17):3439-52. PubMed ID: 8811101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanisms of a mammalian splicing enhancer.
    Jobbins AM; Reichenbach LF; Lucas CM; Hudson AJ; Burley GA; Eperon IC
    Nucleic Acids Res; 2018 Mar; 46(5):2145-2158. PubMed ID: 29394380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic study of red fluorescent protein eqFP578 and its far-red variant Katushka reveals opposite pH-induced isomerization of chromophore.
    Pletneva NV; Pletnev VZ; Shemiakina II; Chudakov DM; Artemyev I; Wlodawer A; Dauter Z; Pletnev S
    Protein Sci; 2011 Jul; 20(7):1265-74. PubMed ID: 21563226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease.
    Gonzalez-Paredes FJ; Ramos-Trujillo E; Claverie-Martin F
    Gene; 2014 Aug; 546(2):243-9. PubMed ID: 24907393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent splicing of beta-globin pre-mRNA.
    Gemignani F; Sazani P; Morcos P; Kole R
    Nucleic Acids Res; 2002 Nov; 30(21):4592-8. PubMed ID: 12409448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bright far-red fluorescent protein for whole-body imaging.
    Shcherbo D; Merzlyak EM; Chepurnykh TV; Fradkov AF; Ermakova GV; Solovieva EA; Lukyanov KA; Bogdanova EA; Zaraisky AG; Lukyanov S; Chudakov DM
    Nat Methods; 2007 Sep; 4(9):741-6. PubMed ID: 17721542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing.
    Subramania S; Gagné LM; Campagne S; Fort V; O'Sullivan J; Mocaer K; Feldmüller M; Masson JY; Allain FHT; Hussein SM; Huot MÉ
    Nucleic Acids Res; 2019 May; 47(8):4181-4197. PubMed ID: 30767021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of hprt splicing mutations induced by the ultimate carcinogenic metabolite of benzo[a]pyrene in Chinese hamster V-79 cells.
    Hennig EE; Conney AH; Wei SJ
    Cancer Res; 1995 Apr; 55(7):1550-8. PubMed ID: 7882364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Splice site skipping in polyomavirus late pre-mRNA processing.
    Luo Y; Carmichael GG
    J Virol; 1991 Dec; 65(12):6637-44. PubMed ID: 1719232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Delay in synthesis of the 3' splice site promotes trans-splicing of the preceding 5' splice site.
    Takahara T; Tasic B; Maniatis T; Akanuma H; Yanagisawa S
    Mol Cell; 2005 Apr; 18(2):245-51. PubMed ID: 15837427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-deep sequencing reveals pre-mRNA splicing as a sequence driven high-fidelity process.
    Reynolds DJ; Hertel KJ
    PLoS One; 2019; 14(10):e0223132. PubMed ID: 31581208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: Comparison of wet-lab and bioinformatics analyses.
    Holla ØL; Nakken S; Mattingsdal M; Ranheim T; Berge KE; Defesche JC; Leren TP
    Mol Genet Metab; 2009 Apr; 96(4):245-52. PubMed ID: 19208450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans-splicing and alternative-tandem-cis-splicing: two ways by which mammalian cells generate a truncated SV40 T-antigen.
    Eul J; Graessmann M; Graessmann A
    Nucleic Acids Res; 1996 May; 24(9):1653-61. PubMed ID: 8649982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exonic splicing enhancers contribute to the use of both 3' and 5' splice site usage of rat beta-tropomyosin pre-mRNA.
    Selvakumar M; Helfman DM
    RNA; 1999 Mar; 5(3):378-94. PubMed ID: 10094307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hermansky-Pudlak syndrome type 2: Aberrant pre-mRNA splicing and mislocalization of granule proteins in neutrophils.
    de Boer M; van Leeuwen K; Geissler J; van Alphen F; de Vries E; van der Kuip M; Terheggen SWJ; Janssen H; van den Berg TK; Meijer AB; Roos D; Kuijpers TW
    Hum Mutat; 2017 Oct; 38(10):1402-1411. PubMed ID: 28585318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.