BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 21899308)

  • 1. Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments.
    Kettenbach AN; Gerber SA
    Anal Chem; 2011 Oct; 83(20):7635-44. PubMed ID: 21899308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.
    Labots M; van der Mijn JC; Beekhof R; Piersma SR; de Goeij-de Haas RR; Pham TV; Knol JC; Dekker H; van Grieken NCT; Verheul HMW; Jiménez CR
    J Proteomics; 2017 Jun; 162():99-107. PubMed ID: 28442448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophilic Carboxyl Cotton Chelator for Titanium(IV) Immobilization and Its Application as Novel Fibrous Sorbent for Rapid Enrichment of Phosphopeptides.
    He XM; Chen X; Zhu GT; Wang Q; Yuan BF; Feng YQ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17356-62. PubMed ID: 26207954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.
    Montoya A; Beltran L; Casado P; Rodríguez-Prados JC; Cutillas PR
    Methods; 2011 Aug; 54(4):370-8. PubMed ID: 21316455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPECHT - single-stage phosphopeptide enrichment and stable-isotope chemical tagging: quantitative phosphoproteomics of insulin action in muscle.
    Kettenbach AN; Sano H; Keller SR; Lienhard GE; Gerber SA
    J Proteomics; 2015 Jan; 114():48-60. PubMed ID: 25463755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated, reproducible, titania-based phosphopeptide enrichment strategy for label-free quantitative phosphoproteomics.
    Richardson BM; Soderblom EJ; Thompson JW; Moseley MA
    J Biomol Tech; 2013 Apr; 24(1):8-16. PubMed ID: 23542237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide validation by microLC-ESI-Q-TOF MS/MS.
    Imanishi SY; Kochin V; Ferraris SE; de Thonel A; Pallari HM; Corthals GL; Eriksson JE
    Mol Cell Proteomics; 2007 Aug; 6(8):1380-91. PubMed ID: 17510049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics.
    Chang A; Leutert M; Rodriguez-Mias RA; Villén J
    J Proteome Res; 2023 Jun; 22(6):1868-1880. PubMed ID: 37097255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster.
    Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ
    J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Titanium Dioxide for Selective Enrichment of Phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():135-46. PubMed ID: 26584923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of different phospho-tyrosine antibodies for label-free phosphoproteomics.
    van der Mijn JC; Labots M; Piersma SR; Pham TV; Knol JC; Broxterman HJ; Verheul HM; Jiménez CR
    J Proteomics; 2015 Sep; 127(Pt B):259-63. PubMed ID: 25890253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protocol on the use of titanium dioxide chromatography for phosphoproteomics.
    Pinkse MW; Lemeer S; Heck AJ
    Methods Mol Biol; 2011; 753():215-28. PubMed ID: 21604125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO
    Bllaci L; Torsetnes SB; Wierzbicka C; Shinde S; Sellergren B; Rogowska-Wrzesinska A; Jensen ON
    Anal Chem; 2017 Nov; 89(21):11332-11340. PubMed ID: 28972365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphopeptide Enrichment Coupled with Label-free Quantitative Mass Spectrometry to Investigate the Phosphoproteome in Prostate Cancer.
    Cheng LC; Li Z; Graeber TG; Graham NA; Drake JM
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30124664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.