These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 21899327)

  • 1. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts.
    Sato S; Arai T; Morikawa T; Uemura K; Suzuki TM; Tanaka H; Kajino T
    J Am Chem Soc; 2011 Oct; 133(39):15240-3. PubMed ID: 21899327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer.
    Arai T; Tajima S; Sato S; Uemura K; Morikawa T; Kajino T
    Chem Commun (Camb); 2011 Dec; 47(47):12664-6. PubMed ID: 22042496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar-Driven CO
    Morikawa T; Sato S; Sekizawa K; Suzuki TM; Arai T
    Acc Chem Res; 2022 Apr; 55(7):933-943. PubMed ID: 34851099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical reduction of CO(2) in water under visible-light irradiation by a p-type InP photocathode modified with an electropolymerized ruthenium complex.
    Arai T; Sato S; Uemura K; Morikawa T; Kajino T; Motohiro T
    Chem Commun (Camb); 2010 Oct; 46(37):6944-6. PubMed ID: 20730225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-catalyzed reversible conversion between chemical and electrical energy designed towards a sustainable society.
    Tanaka K
    Chem Rec; 2009; 9(3):169-86. PubMed ID: 19504503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Z-Schematic and visible-light-driven CO
    Suzuki TM; Yoshino S; Takayama T; Iwase A; Kudo A; Morikawa T
    Chem Commun (Camb); 2018 Sep; 54(72):10199-10202. PubMed ID: 30137068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biohybrid Cells for Photoelectrochemical Conversion Based on the HCOO
    Kong X; Gai P; Li F
    ACS Appl Bio Mater; 2020 Nov; 3(11):8069-8074. PubMed ID: 35019546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrochemical Reduction of CO
    Sahara G; Kumagai H; Maeda K; Kaeffer N; Artero V; Higashi M; Abe R; Ishitani O
    J Am Chem Soc; 2016 Oct; 138(42):14152-14158. PubMed ID: 27690409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst.
    Maeda K; Higashi M; Lu D; Abe R; Domen K
    J Am Chem Soc; 2010 Apr; 132(16):5858-68. PubMed ID: 20369838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Solar-Driven Photocatalytic CO2 Reduction Using Water as an Electron Donor.
    Sato S; Arai T; Morikawa T
    Inorg Chem; 2015 Jun; 54(11):5105-13. PubMed ID: 25679545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct assembly synthesis of metal complex-semiconductor hybrid photocatalysts anchored by phosphonate for highly efficient CO2 reduction.
    Suzuki TM; Tanaka H; Morikawa T; Iwaki M; Sato S; Saeki S; Inoue M; Kajino T; Motohiro T
    Chem Commun (Camb); 2011 Aug; 47(30):8673-5. PubMed ID: 21713249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective Photocatalytic CO
    Kuehnel MF; Orchard KL; Dalle KE; Reisner E
    J Am Chem Soc; 2017 May; 139(21):7217-7223. PubMed ID: 28467076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoreduction of CO
    Sokol KP; Robinson WE; Oliveira AR; Warnan J; Nowaczyk MM; Ruff A; Pereira IAC; Reisner E
    J Am Chem Soc; 2018 Dec; 140(48):16418-16422. PubMed ID: 30452863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconductor/Covalent-Organic-Framework Z-Scheme Heterojunctions for Artificial Photosynthesis.
    Zhang M; Lu M; Lang ZL; Liu J; Liu M; Chang JN; Li LY; Shang LJ; Wang M; Li SL; Lan YQ
    Angew Chem Int Ed Engl; 2020 Apr; 59(16):6500-6506. PubMed ID: 31989745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic CO
    Sato S; Arai T; Morikawa T
    Nanotechnology; 2018 Jan; 29(3):034001. PubMed ID: 29176076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar-driven CO
    Arai T; Sato S; Sekizawa K; Suzuki TM; Morikawa T
    Chem Commun (Camb); 2018 Dec; 55(2):237-240. PubMed ID: 30525139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid photocathode consisting of a CuGaO
    Kumagai H; Sahara G; Maeda K; Higashi M; Abe R; Ishitani O
    Chem Sci; 2017 Jun; 8(6):4242-4249. PubMed ID: 29081960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-light-responsive hybrid photocatalysts for quantitative conversion of CO
    McQueen E; Sakakibara N; Kamogawa K; Zwijnenburg MA; Tamaki Y; Ishitani O; Sprick RS
    Chem Sci; 2024 Oct; 15(43):18146-60. PubMed ID: 39416289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.