These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthetase requires coexpression with an enoyl reductase. Halo LM; Marshall JW; Yakasai AA; Song Z; Butts CP; Crump MP; Heneghan M; Bailey AM; Simpson TJ; Lazarus CM; Cox RJ Chembiochem; 2008 Mar; 9(4):585-94. PubMed ID: 18266306 [TBL] [Abstract][Full Text] [Related]
4. Mutation of key residues in the C-methyltransferase domain of a fungal highly reducing polyketide synthase. Skellam EJ; Hurley D; Davison J; Lazarus CM; Simpson TJ; Cox RJ Mol Biosyst; 2010 Apr; 6(4):680-2. PubMed ID: 20237645 [TBL] [Abstract][Full Text] [Related]
5. Rational domain swaps reveal insights about chain length control by ketosynthase domains in fungal nonreducing polyketide synthases. Liu T; Sanchez JF; Chiang YM; Oakley BR; Wang CC Org Lett; 2014 Mar; 16(6):1676-9. PubMed ID: 24593241 [TBL] [Abstract][Full Text] [Related]
6. Aspergillus oryzae type III polyketide synthase CsyA is involved in the biosynthesis of 3,5-dihydroxybenzoic acid. Seshime Y; Juvvadi PR; Kitamoto K; Ebizuka Y; Nonaka T; Fujii I Bioorg Med Chem Lett; 2010 Aug; 20(16):4785-8. PubMed ID: 20630753 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial domain swaps provide insights into the rules of fungal polyketide synthase programming and the rational synthesis of non-native aromatic products. Vagstad AL; Newman AG; Storm PA; Belecki K; Crawford JM; Townsend CA Angew Chem Int Ed Engl; 2013 Feb; 52(6):1718-21. PubMed ID: 23283670 [No Abstract] [Full Text] [Related]
8. Thioesterase domains of fungal nonreducing polyketide synthases act as decision gates during combinatorial biosynthesis. Xu Y; Zhou T; Zhang S; Xuan LJ; Zhan J; Molnár I J Am Chem Soc; 2013 Jul; 135(29):10783-91. PubMed ID: 23822773 [TBL] [Abstract][Full Text] [Related]
9. Inductive Production of the Iron-Chelating 2-Pyridones Benefits the Producing Fungus To Compete for Diverse Niches. Chen B; Sun Y; Li S; Yin Y; Wang C mBio; 2021 Dec; 12(6):e0327921. PubMed ID: 34903054 [TBL] [Abstract][Full Text] [Related]
10. Aspergillus oryzae type III polyketide synthase CsyB uses a fatty acyl starter for the biosynthesis of csypyrone B compounds. Hashimoto M; Ishida S; Seshime Y; Kitamoto K; Fujii I Bioorg Med Chem Lett; 2013 Oct; 23(20):5637-40. PubMed ID: 24011646 [TBL] [Abstract][Full Text] [Related]
11. Unraveling polyketide synthesis in members of the genus Aspergillus. Chiang YM; Oakley BR; Keller NP; Wang CC Appl Microbiol Biotechnol; 2010 May; 86(6):1719-36. PubMed ID: 20361326 [TBL] [Abstract][Full Text] [Related]
12. Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. Halo LM; Heneghan MN; Yakasai AA; Song Z; Williams K; Bailey AM; Cox RJ; Lazarus CM; Simpson TJ J Am Chem Soc; 2008 Dec; 130(52):17988-96. PubMed ID: 19067514 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic and Extrinsic Programming of Product Chain Length and Release Mode in Fungal Collaborating Iterative Polyketide Synthases. Wang C; Wang X; Zhang L; Yue Q; Liu Q; Xu YM; Gunatilaka AAL; Wei X; Xu Y; Molnár I J Am Chem Soc; 2020 Oct; 142(40):17093-17104. PubMed ID: 32833442 [TBL] [Abstract][Full Text] [Related]
14. Expression, purification and crystallization of a fungal type III polyketide synthase that produces the csypyrones. Yang D; Mori T; Matsui T; Hashimoto M; Morita H; Fujii I; Abe I Acta Crystallogr F Struct Biol Commun; 2014 Jun; 70(Pt 6):730-3. PubMed ID: 24915080 [TBL] [Abstract][Full Text] [Related]
15. Insights into the programmed ketoreduction of partially reducing polyketide synthases: stereo- and substrate-specificity of the ketoreductase domain. Soehano I; Yang L; Ding F; Sun H; Low ZJ; Liu X; Liang ZX Org Biomol Chem; 2014 Nov; 12(42):8542-9. PubMed ID: 25238086 [TBL] [Abstract][Full Text] [Related]
16. Heterologous biosynthesis of a fungal macrocyclic polylactone requires only two iterative polyketide synthases. Bunnak W; Wonnapinij P; Sriboonlert A; Lazarus CM; Wattana-Amorn P Org Biomol Chem; 2019 Jan; 17(2):374-379. PubMed ID: 30556556 [TBL] [Abstract][Full Text] [Related]
17. Product identification of non-reducing polyketide synthases with C-terminus methyltransferase domain from Talaromyces stipitatus using Aspergillus oryzae heterologous expression. Hashimoto M; Wakana D; Ueda M; Kobayashi D; Goda Y; Fujii I Bioorg Med Chem Lett; 2015 Apr; 25(7):1381-4. PubMed ID: 25770780 [TBL] [Abstract][Full Text] [Related]
18. Biosynthetic Machinery of 6-Hydroxymellein Derivatives Leading to Cyclohelminthols and Palmaenones. Ugai T; Minami A; Tanaka S; Ozaki T; Liu C; Shigemori H; Hashimoto M; Oikawa H Chembiochem; 2020 Feb; 21(3):360-367. PubMed ID: 31298454 [TBL] [Abstract][Full Text] [Related]
19. Identification of a novel polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Tokuoka M; Seshime Y; Fujii I; Kitamoto K; Takahashi T; Koyama Y Fungal Genet Biol; 2008 Dec; 45(12):1608-15. PubMed ID: 18854220 [TBL] [Abstract][Full Text] [Related]
20. Heterologous expression of a polyketide synthase ACRTS2 in Aspergillus oryzae produces host-selective ACR toxins: coproduction of minor metabolites. Kotani A; Ozaki T; Takino J; Mochizuki S; Akimitsu K; Minami A; Oikawa H Biosci Biotechnol Biochem; 2022 Feb; 86(3):287-293. PubMed ID: 34894229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]