These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21899348)

  • 1. Synthesis and characterization of wurtzite ZnTe nanorods with controllable aspect ratios.
    Zhang J; Jin S; Fry HC; Peng S; Shevchenko E; Wiederrecht GP; Rajh T
    J Am Chem Soc; 2011 Oct; 133(39):15324-7. PubMed ID: 21899348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of self-assembled ZnTe magic-sized nanoclusters.
    Zhang J; Rowland C; Liu Y; Xiong H; Kwon S; Shevchenko E; Schaller RD; Prakapenka VB; Tkachev S; Rajh T
    J Am Chem Soc; 2015 Jan; 137(2):742-9. PubMed ID: 25531438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of one-dimensional CdSe by a novel reverse micelle assisted hydrothermal method.
    Xi L; Lam YM; Xu YP; Li LJ
    J Colloid Interface Sci; 2008 Apr; 320(2):491-500. PubMed ID: 18291411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ growth, structure characterization, and enhanced photocatalysis of high-quality, single-crystalline ZnTe/ZnO branched nanoheterostructures.
    Sun Y; Zhao Q; Gao J; Ye Y; Wang W; Zhu R; Xu J; Chen L; Yang J; Dai L; Liao ZM; Yu D
    Nanoscale; 2011 Oct; 3(10):4418-26. PubMed ID: 21931901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial fabrication of single-crystalline ZnTe nanorods with high blue fluorescence.
    Hou L; Zhang Q; Ling L; Li CX; Chen L; Chen S
    J Am Chem Soc; 2013 Jul; 135(29):10618-21. PubMed ID: 23829658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled synthesis of alpha-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties.
    Zeng S; Tang K; Li T
    J Colloid Interface Sci; 2007 Aug; 312(2):513-21. PubMed ID: 17498731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-tuning the synthesis of ZnO nanostructures by an alcohol thermal process.
    Cheng JP; Zhang XB; Tao XY; Lu HM; Luo ZQ; Liu F
    J Phys Chem B; 2006 Jun; 110(21):10348-53. PubMed ID: 16722738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast studies of gold, nickel, and palladium nanorods.
    Sando GM; Berry AD; Owrutsky JC
    J Chem Phys; 2007 Aug; 127(7):074705. PubMed ID: 17718625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of high aspect ratio quantum-size CdS nanorods and their surface-dependent photoluminescence.
    Saunders AE; Ghezelbash A; Sood P; Korgel BA
    Langmuir; 2008 Aug; 24(16):9043-9. PubMed ID: 18616312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and stability of ZnTe magic-size nanocrystals.
    Groeneveld E; van Berkum S; Meijerink A; de Mello Donegá C
    Small; 2011 May; 7(9):1247-56. PubMed ID: 21480520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network.
    Chen X; Xu H; Xu N; Zhao F; Lin W; Lin G; Fu Y; Huang Z; Wang H; Wu M
    Inorg Chem; 2003 May; 42(9):3100-6. PubMed ID: 12716207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-related optical and catalytic properties of wurtzite-type CoO nanoplates and nanorods.
    Lu A; Chen Y; Zeng D; Li M; Xie Q; Zhang X; Peng DL
    Nanotechnology; 2014 Jan; 25(3):035707. PubMed ID: 24356716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gram-scale synthesis of silica nanotubes with controlled aspect ratios by templating of nickel-hydrazine complex nanorods.
    Gao C; Lu Z; Yin Y
    Langmuir; 2011 Oct; 27(19):12201-8. PubMed ID: 21861481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.
    Cho S; Kim S; Lee KH
    J Colloid Interface Sci; 2011 Sep; 361(2):436-42. PubMed ID: 21708385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic absorption in PbSe nanorods.
    Cunningham PD; Boercker JE; Placencia D; Tischler JG
    ACS Nano; 2014 Jan; 8(1):581-90. PubMed ID: 24377267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application.
    Sadat-Shojai M; Atai M; Nodehi A; Khanlar LN
    Dent Mater; 2010 May; 26(5):471-82. PubMed ID: 20153516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-temperature growth of ZnO nanorods by chemical bath deposition.
    Yi SH; Choi SK; Jang JM; Kim JA; Jung WG
    J Colloid Interface Sci; 2007 Sep; 313(2):705-10. PubMed ID: 17570384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.
    Xi G; Ye J
    Inorg Chem; 2010 Mar; 49(5):2302-9. PubMed ID: 20088491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.