BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21899811)

  • 1. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.
    Okuda M; Ogawa N; Takeguchi M; Hashimoto A; Tagaya M; Chen S; Hanagata N; Ikoma T
    Microsc Microanal; 2011 Oct; 17(5):788-98. PubMed ID: 21899811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elemental distribution analysis of type I collagen fibrils in tilapia fish scale with energy-filtered transmission electron microscope.
    Okuda M; Takeguchi M; Tagaya M; Tonegawa T; Hashimoto A; Hanagata N; Ikoma T
    Micron; 2009; 40(5-6):665-8. PubMed ID: 19419879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields.
    Chen S; Hirota N; Okuda M; Takeguchi M; Kobayashi H; Hanagata N; Ikoma T
    Acta Biomater; 2011 Feb; 7(2):644-52. PubMed ID: 20851220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.
    Landis WJ; Hodgens KJ; Arena J; Song MJ; McEwen BF
    Microsc Res Tech; 1996 Feb; 33(2):192-202. PubMed ID: 8845518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning transmission electron microscopic tomography of cortical bone using Z-contrast imaging.
    McNally E; Nan F; Botton GA; Schwarcz HP
    Micron; 2013 Jun; 49():46-53. PubMed ID: 23545162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction.
    Landis WJ; Song MJ; Leith A; McEwen L; McEwen BF
    J Struct Biol; 1993; 110(1):39-54. PubMed ID: 8494671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twisted plywood pattern of collagen fibrils in teleost scales: an X-ray diffraction investigation.
    Bigi A; Burghammer M; Falconi R; Koch MH; Panzavolta S; Riekel C
    J Struct Biol; 2001 Nov; 136(2):137-43. PubMed ID: 11886215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The locus of mineral crystallites in bone.
    Lees S; Prostak K
    Connect Tissue Res; 1988; 18(1):41-54. PubMed ID: 3180814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging.
    Landis WJ; Hodgens KJ; Song MJ; Arena J; Kiyonaga S; Marko M; Owen C; McEwen BF
    J Struct Biol; 1996; 117(1):24-35. PubMed ID: 8776885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative determination of the mineral distribution in different collagen zones of calcifying tendon using high voltage electron microscopic tomography.
    McEwen BF; Song MJ; Landis WJ
    J Comput Assist Microsc; 1991; 3(4):201-10. PubMed ID: 11537967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals.
    Schwarcz HP; McNally EA; Botton GA
    J Struct Biol; 2014 Dec; 188(3):240-8. PubMed ID: 25449316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of the mineral component of bone and the mechanism of calcification.
    Glimcher MJ
    Instr Course Lect; 1987; 36():49-69. PubMed ID: 3325562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image analysis of mineralized and non-mineralized type I collagen fibrils.
    Arsenault AL
    J Electron Microsc Tech; 1991 Jul; 18(3):262-8. PubMed ID: 1880599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural analysis of bone calcification by using energy-filtering transmission electron microscopy.
    Hoshi K; Ejiri S; Ozawa H
    Ital J Anat Embryol; 2001; 106(2 Suppl 1):141-50. PubMed ID: 11729949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nano-morphological relationships between apatite crystals and collagen fibrils in ivory dentine.
    Jantou-Morris V; Horton MA; McComb DW
    Biomaterials; 2010 Jul; 31(19):5275-86. PubMed ID: 20381860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic imaging of mineral and collagen in the calcifying turkey tendon.
    Landis WJ; Moradian-Oldak J; Weiner S
    Connect Tissue Res; 1991; 25(3-4):181-96. PubMed ID: 1647935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen-chondroitin sulphate-hydroxyapatite porous composites: a histochemical and electron microscopy approach.
    Zarnescu O; Craciunescu O; Moldovan L
    Microsc Microanal; 2010 Apr; 16(2):137-42. PubMed ID: 20100384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prismatic dentine in the Australian lungfish, Neoceratodus forsteri (Osteichthyes: Dipnoi).
    Kemp A; Barry JC
    Tissue Cell; 2006 Apr; 38(2):127-40. PubMed ID: 16473380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblasts generate harder, stiffer, and more delamination-resistant mineralized tissue on titanium than on polystyrene, associated with distinct tissue micro- and ultrastructure.
    Saruwatari L; Aita H; Butz F; Nakamura HK; Ouyang J; Yang Y; Chiou WA; Ogawa T
    J Bone Miner Res; 2005 Nov; 20(11):2002-16. PubMed ID: 16234974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix-mediated biomineralization in marine mollusks: a combined transmission electron microscopy and focused ion beam approach.
    Saunders M; Kong C; Shaw JA; Clode PL
    Microsc Microanal; 2011 Apr; 17(2):220-5. PubMed ID: 21371372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.