BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21900204)

  • 1. Crowdsourcing network inference: the DREAM predictive signaling network challenge.
    Prill RJ; Saez-Rodriguez J; Alexopoulos LG; Sorger PK; Stolovitzky G
    Sci Signal; 2011 Aug; 4(189):mr7. PubMed ID: 21900204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational discovery of dynamic cell line specific Boolean networks from multiplex time-course data.
    Razzaq M; Paulevé L; Siegel A; Saez-Rodriguez J; Bourdon J; Guziolowski C
    PLoS Comput Biol; 2018 Oct; 14(10):e1006538. PubMed ID: 30372442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A crowd-sourcing approach for the construction of species-specific cell signaling networks.
    Bilal E; Sakellaropoulos T; Melas IN; Messinis DE; Belcastro V; Rhrissorrakrai K; Meyer P; Norel R; Iskandar A; Blaese E; Rice JJ; Peitsch MC; Hoeng J; Stolovitzky G; Alexopoulos LG; Poussin C;
    Bioinformatics; 2015 Feb; 31(4):484-91. PubMed ID: 25294919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational phosphorylation network reconstruction: methods and resources.
    Duan G; Walther D
    Methods Mol Biol; 2015; 1306():177-94. PubMed ID: 25930703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSGS: a computational approach to reconstruct signaling pathway structures from gene sets.
    Acharya L; Judeh T; Duan Z; Rabbat M; Zhu D
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):438-50. PubMed ID: 22025758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmenting subnetwork inference with information extracted from the scientific literature.
    Kiblawi S; Chasman D; Henning A; Park E; Poon H; Gould M; Ahlquist P; Craven M
    PLoS Comput Biol; 2019 Jun; 15(6):e1006758. PubMed ID: 31246951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphoproteomics-based network medicine.
    Liu Z; Wang Y; Xue Y
    FEBS J; 2013 Nov; 280(22):5696-704. PubMed ID: 23751130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of global regulatory network from signaling to cellular functions using phosphoproteomic data.
    Kawata K; Yugi K; Hatano A; Kokaji T; Tomizawa Y; Fujii M; Uda S; Kubota H; Matsumoto M; Nakayama KI; Kuroda S
    Genes Cells; 2019 Jan; 24(1):82-93. PubMed ID: 30417516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative Approaches for Inference of Genome-Scale Gene Regulatory Networks.
    Siahpirani AF; Chasman D; Roy S
    Methods Mol Biol; 2019; 1883():161-194. PubMed ID: 30547400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of large signaling pathways using an adaptive perturbation approach with phosphoproteomic data.
    Melas IN; Mitsos A; Messinis DE; Weiss TS; Rodriguez JS; Alexopoulos LG
    Mol Biosyst; 2012 Apr; 8(5):1571-84. PubMed ID: 22446821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a rigorous assessment of systems biology models: the DREAM3 challenges.
    Prill RJ; Marbach D; Saez-Rodriguez J; Sorger PK; Alexopoulos LG; Xue X; Clarke ND; Altan-Bonnet G; Stolovitzky G
    PLoS One; 2010 Feb; 5(2):e9202. PubMed ID: 20186320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A directed protein interaction network for investigating intracellular signal transduction.
    Vinayagam A; Stelzl U; Foulle R; Plassmann S; Zenkner M; Timm J; Assmus HE; Andrade-Navarro MA; Wanker EE
    Sci Signal; 2011 Sep; 4(189):rs8. PubMed ID: 21900206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network reconstruction based on proteomic data and prior knowledge of protein connectivity using graph theory.
    Stavrakas V; Melas IN; Sakellaropoulos T; Alexopoulos LG
    PLoS One; 2015; 10(5):e0128411. PubMed ID: 26020784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of phosphoproteomics: progresses and perspectives.
    Ren J; Gao X; Liu Z; Cao J; Ma Q; Xue Y
    Curr Protein Pept Sci; 2011 Nov; 12(7):591-601. PubMed ID: 21827424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Data-Driven Signaling Network Inference Approach for Phosphoproteomics.
    Madison I; Amin F; Song K; Sozzani R; Van den Broeck L
    Methods Mol Biol; 2023; 2690():335-354. PubMed ID: 37450158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for the processing and downstream analysis of phosphoproteomic data with PhosR.
    Kim HJ; Kim T; Xiao D; Yang P
    STAR Protoc; 2021 Jun; 2(2):100585. PubMed ID: 34151303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the topology of signaling networks from partial RNAi data.
    Ren Y; Wang Q; Hasan MM; Ay A; Kahveci T
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):53. PubMed ID: 27490106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Phosphoproteomics Datasets and Literature Information to Reveal the Functional Connections in a Cell Phosphorylation Network.
    Sacco F; Perfetto L; Cesareni G
    Proteomics; 2018 Mar; 18(5-6):e1700311. PubMed ID: 29280302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P-Finder: Reconstruction of Signaling Networks from Protein-Protein Interactions and GO Annotations.
    Young-Rae Cho ; Yanan Xin ; Speegle G
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):309-21. PubMed ID: 26357219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.