BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21900204)

  • 21. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.
    Alli-Shaik A; Wee S; Lim LHK; Gunaratne J
    Breast Cancer Res; 2017 Dec; 19(1):132. PubMed ID: 29233185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing strengths and weaknesses of methods for gene network inference.
    Marbach D; Prill RJ; Schaffter T; Mattiussi C; Floreano D; Stolovitzky G
    Proc Natl Acad Sci U S A; 2010 Apr; 107(14):6286-91. PubMed ID: 20308593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis.
    Narushima Y; Kozuka-Hata H; Tsumoto K; Inoue J; Oyama M
    Bioinformatics; 2016 Jul; 32(14):2083-8. PubMed ID: 27153602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Phosphoproteomic Analysis Provides Insight into the Response to Short-Term Drought Stress in Ammopiptanthus mongolicus Roots.
    Sun H; Xia B; Wang X; Gao F; Zhou Y
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29039783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust inference of kinase activity using functional networks.
    Yılmaz S; Ayati M; Schlatzer D; Çiçek AE; Chance MR; Koyutürk M
    Nat Commun; 2021 Feb; 12(1):1177. PubMed ID: 33608514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphoproteomic analysis reveals PAK2 as a therapeutic target for lapatinib resistance in HER2-positive breast cancer cells.
    Chang Y; Park KH; Lee JE; Han KC
    Biochem Biophys Res Commun; 2018 Oct; 505(1):187-193. PubMed ID: 30243723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying protein complexes based on brainstorming strategy.
    Shen X; Zhou J; Yi L; Hu X; He T; Yang J
    Methods; 2016 Nov; 110():44-53. PubMed ID: 27405005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Community Assessment of the Predictability of Cancer Protein and Phosphoprotein Levels from Genomics and Transcriptomics.
    Yang M; Petralia F; Li Z; Li H; Ma W; Song X; Kim S; Lee H; Yu H; Lee B; Bae S; Heo E; Kaczmarczyk J; Stępniak P; Warchoł M; Yu T; Calinawan AP; Boutros PC; Payne SH; Reva B; ; Boja E; Rodriguez H; Stolovitzky G; Guan Y; Kang J; Wang P; Fenyö D; Saez-Rodriguez J
    Cell Syst; 2020 Aug; 11(2):186-195.e9. PubMed ID: 32710834
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constructing the angiome: a global angiogenesis protein interaction network.
    Chu LH; Rivera CG; Popel AS; Bader JS
    Physiol Genomics; 2012 Oct; 44(19):915-24. PubMed ID: 22911453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clustering and Network Analysis of Reverse Phase Protein Array Data.
    Byron A
    Methods Mol Biol; 2017; 1606():171-191. PubMed ID: 28502001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphoproteomic analysis of cells treated with longevity-related autophagy inducers.
    Bennetzen MV; Mariño G; Pultz D; Morselli E; Færgeman NJ; Kroemer G; Andersen JS
    Cell Cycle; 2012 May; 11(9):1827-40. PubMed ID: 22517431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-varying causal inference from phosphoproteomic measurements in macrophage cells.
    Masnadi-Shirazi M; Maurya MR; Subramaniam S
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):74-86. PubMed ID: 24681921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Voting-based integration algorithm improves causal network learning from interventional and observational data: An application to cell signaling network inference.
    Sinha M; Tadepalli P; Ramsey SA
    PLoS One; 2021; 16(2):e0245776. PubMed ID: 33556096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ProteoViz: a tool for the analysis and interactive visualization of phosphoproteomics data.
    Storey AJ; Naceanceno KS; Lan RS; Washam CL; Orr LM; Mackintosh SG; Tackett AJ; Edmondson RD; Wang Z; Li HY; Frett B; Kendrick S; Byrum SD
    Mol Omics; 2020 Aug; 16(4):316-326. PubMed ID: 32347222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reverse-phase protein lysate microarray (RPA) for the experimental validation of quantitative protein network models.
    Nishizuka SS
    Methods Mol Biol; 2011; 785():65-77. PubMed ID: 21901594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ChainRank, a chain prioritisation method for contextualisation of biological networks.
    Tényi Á; de Atauri P; Gomez-Cabrero D; Cano I; Clarke K; Falciani F; Cascante M; Roca J; Maier D
    BMC Bioinformatics; 2016 Jan; 17():17. PubMed ID: 26729273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Netter: re-ranking gene network inference predictions using structural network properties.
    Ruyssinck J; Demeester P; Dhaene T; Saeys Y
    BMC Bioinformatics; 2016 Feb; 17():76. PubMed ID: 26862054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrative C. elegans protein-protein interaction network with reliability assessment based on a probabilistic graphical model.
    Huang XT; Zhu Y; Chan LL; Zhao Z; Yan H
    Mol Biosyst; 2016 Jan; 12(1):85-92. PubMed ID: 26555698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elucidating synergistic dependencies in lung adenocarcinoma by proteome-wide signaling-network analysis.
    Bansal M; He J; Peyton M; Kustagi M; Iyer A; Comb M; White M; Minna JD; Califano A
    PLoS One; 2019; 14(1):e0208646. PubMed ID: 30615629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.