These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 21900231)
1. Structure of a ternary Naa50p (NAT5/SAN) N-terminal acetyltransferase complex reveals the molecular basis for substrate-specific acetylation. Liszczak G; Arnesen T; Marmorstein R J Biol Chem; 2011 Oct; 286(42):37002-10. PubMed ID: 21900231 [TBL] [Abstract][Full Text] [Related]
2. Human Naa50p (Nat5/San) displays both protein N alpha- and N epsilon-acetyltransferase activity. Evjenth R; Hole K; Karlsen OA; Ziegler M; Arnesen T; Lillehaug JR J Biol Chem; 2009 Nov; 284(45):31122-9. PubMed ID: 19744929 [TBL] [Abstract][Full Text] [Related]
3. Molecular Basis for Cohesin Acetylation by Establishment of Sister Chromatid Cohesion N-Acetyltransferase ESCO1. Rivera-Colón Y; Maguire A; Liszczak GP; Olia AS; Marmorstein R J Biol Chem; 2016 Dec; 291(51):26468-26477. PubMed ID: 27803161 [TBL] [Abstract][Full Text] [Related]
4. Structural basis for substrate-specific acetylation of Nα-acetyltransferase Ard1 from Sulfolobus solfataricus. Chang YY; Hsu CH Sci Rep; 2015 Mar; 5():8673. PubMed ID: 25728374 [TBL] [Abstract][Full Text] [Related]
5. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases. Grauffel C; Abboud A; Liszczak G; Marmorstein R; Arnesen T; Reuter N PLoS One; 2012; 7(12):e52642. PubMed ID: 23285125 [TBL] [Abstract][Full Text] [Related]
6. Molecular, cellular, and physiological significance of N-terminal acetylation. Aksnes H; Hole K; Arnesen T Int Rev Cell Mol Biol; 2015; 316():267-305. PubMed ID: 25805127 [TBL] [Abstract][Full Text] [Related]
7. Proteome-derived peptide libraries allow detailed analysis of the substrate specificities of N(alpha)-acetyltransferases and point to hNaa10p as the post-translational actin N(alpha)-acetyltransferase. Van Damme P; Evjenth R; Foyn H; Demeyer K; De Bock PJ; Lillehaug JR; Vandekerckhove J; Arnesen T; Gevaert K Mol Cell Proteomics; 2011 May; 10(5):M110.004580. PubMed ID: 21383206 [TBL] [Abstract][Full Text] [Related]
8. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog. Liszczak G; Marmorstein R Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14652-7. PubMed ID: 23959863 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of an aminoglycoside 6'-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Wybenga-Groot LE; Draker K; Wright GD; Berghuis AM Structure; 1999 May; 7(5):497-507. PubMed ID: 10378269 [TBL] [Abstract][Full Text] [Related]
10. Structure of the GCN5 histone acetyltransferase bound to a bisubstrate inhibitor. Poux AN; Cebrat M; Kim CM; Cole PA; Marmorstein R Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14065-70. PubMed ID: 12391296 [TBL] [Abstract][Full Text] [Related]
11. Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80. Goris M; Magin RS; Foyn H; Myklebust LM; Varland S; Ree R; Drazic A; Bhambra P; Støve SI; Baumann M; Haug BE; Marmorstein R; Arnesen T Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4405-4410. PubMed ID: 29581307 [TBL] [Abstract][Full Text] [Related]
12. Structural, functional, and inhibition studies of a Gcn5-related N-acetyltransferase (GNAT) superfamily protein PA4794: a new C-terminal lysine protein acetyltransferase from pseudomonas aeruginosa. Majorek KA; Kuhn ML; Chruszcz M; Anderson WF; Minor W J Biol Chem; 2013 Oct; 288(42):30223-30235. PubMed ID: 24003232 [TBL] [Abstract][Full Text] [Related]
13. Structure of the α-tubulin acetyltransferase, αTAT1, and implications for tubulin-specific acetylation. Friedmann DR; Aguilar A; Fan J; Nachury MV; Marmorstein R Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19655-60. PubMed ID: 23071314 [TBL] [Abstract][Full Text] [Related]
14. Molecular basis for Gcn5/PCAF histone acetyltransferase selectivity for histone and nonhistone substrates. Poux AN; Marmorstein R Biochemistry; 2003 Dec; 42(49):14366-74. PubMed ID: 14661947 [TBL] [Abstract][Full Text] [Related]
15. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases. Van Damme P; Hole K; Gevaert K; Arnesen T Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for acyl-group discrimination by human Gcn5L2. Ringel AE; Wolberger C Acta Crystallogr D Struct Biol; 2016 Jul; 72(Pt 7):841-8. PubMed ID: 27377381 [TBL] [Abstract][Full Text] [Related]
17. The human N-alpha-acetyltransferase 40 (hNaa40p/hNatD) is conserved from yeast and N-terminally acetylates histones H2A and H4. Hole K; Van Damme P; Dalva M; Aksnes H; Glomnes N; Varhaug JE; Lillehaug JR; Gevaert K; Arnesen T PLoS One; 2011; 6(9):e24713. PubMed ID: 21935442 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the acetylation mechanism by GCN5 histone acetyltransferase. Jiang J; Lu J; Lu D; Liang Z; Li L; Ouyang S; Kong X; Jiang H; Shen B; Luo C PLoS One; 2012; 7(5):e36660. PubMed ID: 22574209 [TBL] [Abstract][Full Text] [Related]
19. A novel human NatA Nalpha-terminal acetyltransferase complex: hNaa16p-hNaa10p (hNat2-hArd1). Arnesen T; Gromyko D; Kagabo D; Betts MJ; Starheim KK; Varhaug JE; Anderson D; Lillehaug JR BMC Biochem; 2009 May; 10():15. PubMed ID: 19480662 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the histone acetyltransferase Hpa2: A tetrameric member of the Gcn5-related N-acetyltransferase superfamily. Angus-Hill ML; Dutnall RN; Tafrov ST; Sternglanz R; Ramakrishnan V J Mol Biol; 1999 Dec; 294(5):1311-25. PubMed ID: 10600387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]