These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21900476)

  • 1. Roles of biogenic amines in regulating bioluminescence in the Australian glowworm Arachnocampa flava.
    Rigby LM; Merritt DJ
    J Exp Biol; 2011 Oct; 214(Pt 19):3286-93. PubMed ID: 21900476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide-induced bioluminescence increase in
    Charlton HR; Merritt DJ
    J Exp Biol; 2020 Aug; 223(Pt 15):. PubMed ID: 32611789
    [No Abstract]   [Full Text] [Related]  

  • 3. Circadian regulation of bioluminescence in the prey-luring glowworm, Arachnocampa flava.
    Merritt DJ; Aotani S
    J Biol Rhythms; 2008 Aug; 23(4):319-29. PubMed ID: 18663239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using light as a lure is an efficient predatory strategy in Arachnocampa flava, an Australian glowworm.
    Willis RE; White CR; Merritt DJ
    J Comp Physiol B; 2011 May; 181(4):477-86. PubMed ID: 21136265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of light and vibration modulates bioluminescence intensity in the glowworm, Arachnocampa flava.
    Mills R; Popple JA; Veidt M; Merritt DJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Apr; 202(4):313-27. PubMed ID: 26897608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative RNA seq analysis of the New Zealand glowworm Arachnocampa luminosa reveals bioluminescence-related genes.
    Sharpe ML; Dearden PK; Gimenez G; Krause KL
    BMC Genomics; 2015 Oct; 16():825. PubMed ID: 26486607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Same temporal niche, opposite rhythmicity: two closely related bioluminescent insects with opposite bioluminesce propensity rhythms.
    Merritt DJ; Rodgers EM; Amir AF; Clarke AK
    Chronobiol Int; 2012 Dec; 29(10):1336-44. PubMed ID: 23130886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeostatic and circadian mechanisms of bioluminescence regulation differ between a forest and a facultative cave species of glowworm, Arachnocampa.
    Berry SE; Gilchrist J; Merritt DJ
    J Insect Physiol; 2017 Nov; 103():1-9. PubMed ID: 28899751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (Glowworms).
    Merritt DJ; Clarke AK
    J Biol Rhythms; 2011 Feb; 26(1):34-43. PubMed ID: 21252364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transcriptional and proteomic survey of Arachnocampa luminosa (Diptera: Keroplatidae) lanterns gives insights into the origin of bioluminescence from the Malpighian tubules in Diptera.
    Silva JR; Amaral DT; Hastings JW; Wilson T; Viviani VR
    Luminescence; 2015 Nov; 30(7):996-1003. PubMed ID: 25676901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a photoaffinity ligand for octopamine receptors.
    Nathanson JA
    Mol Pharmacol; 1989 Jul; 36(1):34-43. PubMed ID: 2747629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae.
    Saraswati S; Fox LE; Soll DR; Wu CF
    J Neurobiol; 2004 Mar; 58(4):425-41. PubMed ID: 14978721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glowworms: a review of Arachnocampa spp. and kin.
    Meyer-Rochow VB
    Luminescence; 2007; 22(3):251-65. PubMed ID: 17285566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two bioluminescent diptera: the North American Orfelia fultoni and the Australian Arachnocampa flava. Similar niche, different bioluminescence systems.
    Viviani VR; Hastings JW; Wilson T
    Photochem Photobiol; 2002 Jan; 75(1):22-7. PubMed ID: 11837324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic amines, caffeine and tonic immobility in Tribolium castaneum.
    Nishi Y; Sasaki K; Miyatake T
    J Insect Physiol; 2010 Jun; 56(6):622-8. PubMed ID: 20079743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyramine: from octopamine precursor to neuroactive chemical in insects.
    Lange AB
    Gen Comp Endocrinol; 2009 May; 162(1):18-26. PubMed ID: 18588893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biogenic amines modulate pulse rate in the dorsal blood vessel of Lumbriculus variegatus.
    Crisp KM; Grupe RE; Lobsang TT; Yang X
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 May; 151(4):467-72. PubMed ID: 20167287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of octopamine, dopamine, and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta.
    Claassen DE; Kammer AE
    J Neurobiol; 1986 Jan; 17(1):1-14. PubMed ID: 3088211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octopamine--a single modulator with double action on the heart of two insect species (Apis mellifera macedonica and Bactrocera oleae): Acceleration vs. inhibition.
    Papaefthimiou C; Theophilidis G
    J Insect Physiol; 2011 Feb; 57(2):316-25. PubMed ID: 21147117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Biogenic Amines in Oviposition by the Diamondback Moth,
    Li F; Li K; Wu LJ; Fan YL; Liu TX
    Front Physiol; 2020; 11():475. PubMed ID: 32528307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.