BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21900571)

  • 1. Fukutin-related protein alters the deposition of laminin in the eye and brain.
    Ackroyd MR; Whitmore C; Prior S; Kaluarachchi M; Nikolic M; Mayer U; Muntoni F; Brown SC
    J Neurosci; 2011 Sep; 31(36):12927-35. PubMed ID: 21900571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced expression of fukutin related protein in mice results in a model for fukutin related protein associated muscular dystrophies.
    Ackroyd MR; Skordis L; Kaluarachchi M; Godwin J; Prior S; Fidanboylu M; Piercy RJ; Muntoni F; Brown SC
    Brain; 2009 Feb; 132(Pt 2):439-51. PubMed ID: 19155270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan.
    Brockington M; Blake DJ; Prandini P; Brown SC; Torelli S; Benson MA; Ponting CP; Estournet B; Romero NB; Mercuri E; Voit T; Sewry CA; Guicheney P; Muntoni F
    Am J Hum Genet; 2001 Dec; 69(6):1198-209. PubMed ID: 11592034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies.
    Kim J; Hopkinson M; Kavishwar M; Fernandez-Fuente M; Brown SC
    Skelet Muscle; 2016; 6():3. PubMed ID: 26900448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental defects in a zebrafish model for muscular dystrophies associated with the loss of fukutin-related protein (FKRP).
    Thornhill P; Bassett D; Lochmüller H; Bushby K; Straub V
    Brain; 2008 Jun; 131(Pt 6):1551-61. PubMed ID: 18477595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebrafish models for human FKRP muscular dystrophies.
    Kawahara G; Guyon JR; Nakamura Y; Kunkel LM
    Hum Mol Genet; 2010 Feb; 19(4):623-33. PubMed ID: 19955119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy.
    Kanagawa M; Nishimoto A; Chiyonobu T; Takeda S; Miyagoe-Suzuki Y; Wang F; Fujikake N; Taniguchi M; Lu Z; Tachikawa M; Nagai Y; Tashiro F; Miyazaki J; Tajima Y; Takeda S; Endo T; Kobayashi K; Campbell KP; Toda T
    Hum Mol Genet; 2009 Feb; 18(4):621-31. PubMed ID: 19017726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice.
    Whitmore C; Fernandez-Fuente M; Booler H; Parr C; Kavishwar M; Ashraf A; Lacey E; Kim J; Terry R; Ackroyd MR; Wells KE; Muntoni F; Wells DJ; Brown SC
    Hum Mol Genet; 2014 Apr; 23(7):1842-55. PubMed ID: 24234655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limb girdle muscular dystrophy type 2I: No correlation between clinical severity, histopathology and glycosylated α-dystroglycan levels in patients homozygous for common FKRP mutation.
    Alhamidi M; Brox V; Stensland E; Liset M; Lindal S; Nilssen Ø
    Neuromuscul Disord; 2017 Jul; 27(7):619-626. PubMed ID: 28479227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fukutin-related protein is essential for mouse muscle, brain and eye development and mutation recapitulates the wide clinical spectrums of dystroglycanopathies.
    Chan YM; Keramaris-Vrantsis E; Lidov HG; Norton JH; Zinchenko N; Gruber HE; Thresher R; Blake DJ; Ashar J; Rosenfeld J; Lu QL
    Hum Mol Genet; 2010 Oct; 19(20):3995-4006. PubMed ID: 20675713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and cerebellar cysts.
    Topaloglu H; Brockington M; Yuva Y; Talim B; Haliloglu G; Blake D; Torelli S; Brown SC; Muntoni F
    Neurology; 2003 Mar; 60(6):988-92. PubMed ID: 12654965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of post-phosphoryl modification in dystroglycanopathy mouse models and wild-type tissues expressing non-laminin binding form of α-dystroglycan.
    Kuga A; Kanagawa M; Sudo A; Chan YM; Tajiri M; Manya H; Kikkawa Y; Nomizu M; Kobayashi K; Endo T; Lu QL; Wada Y; Toda T
    J Biol Chem; 2012 Mar; 287(12):9560-7. PubMed ID: 22270369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse models of fukutin-related protein mutations show a wide range of disease phenotypes.
    Blaeser A; Keramaris E; Chan YM; Sparks S; Cowley D; Xiao X; Lu QL
    Hum Genet; 2013 Aug; 132(8):923-34. PubMed ID: 23591631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adeno-associated virus 9 mediated FKRP gene therapy restores functional glycosylation of α-dystroglycan and improves muscle functions.
    Xu L; Lu PJ; Wang CH; Keramaris E; Qiao C; Xiao B; Blake DJ; Xiao X; Lu QL
    Mol Ther; 2013 Oct; 21(10):1832-40. PubMed ID: 23817215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan.
    Longman C; Brockington M; Torelli S; Jimenez-Mallebrera C; Kennedy C; Khalil N; Feng L; Saran RK; Voit T; Merlini L; Sewry CA; Brown SC; Muntoni F
    Hum Mol Genet; 2003 Nov; 12(21):2853-61. PubMed ID: 12966029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-Natal knockdown of fukutin-related protein expression in muscle by long-termRNA interference induces dystrophic pathology [corrected].
    Wang CH; Chan YM; Tang RH; Xiao B; Lu P; Keramaris-Vrantsis E; Zheng H; Qiao C; Jiang J; Li J; Ma HI; Lu Q; Xiao X
    Am J Pathol; 2011 Jan; 178(1):261-72. PubMed ID: 21224063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autologous intramuscular transplantation of engineered satellite cells induces exosome-mediated systemic expression of Fukutin-related protein and rescues disease phenotype in a murine model of limb-girdle muscular dystrophy type 2I.
    Frattini P; Villa C; De Santis F; Meregalli M; Belicchi M; Erratico S; Bella P; Raimondi MT; Lu Q; Torrente Y
    Hum Mol Genet; 2017 Oct; 26(19):3682-3698. PubMed ID: 28666318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pathomechanism and therapeutic strategy of Fukuyama congenital muscular dystrophy and related disorders].
    Toda T
    Rinsho Shinkeigaku; 2009 Nov; 49(11):859-62. PubMed ID: 20030231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes.
    Ortiz-Cordero C; Magli A; Dhoke NR; Kuebler T; Selvaraj S; Oliveira NA; Zhou H; Sham YY; Bang AG; Perlingeiro RC
    Elife; 2021 Jan; 10():. PubMed ID: 33513091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AAV-mediated transfer of FKRP shows therapeutic efficacy in a murine model but requires control of gene expression.
    Gicquel E; Maizonnier N; Foltz SJ; Martin WJ; Bourg N; Svinartchouk F; Charton K; Beedle AM; Richard I
    Hum Mol Genet; 2017 May; 26(10):1952-1965. PubMed ID: 28334834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.