These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21900608)

  • 1. Pulsed quantum optomechanics.
    Vanner MR; Pikovski I; Cole GD; Kim MS; Brukner C; Hammerer K; Milburn GJ; Aspelmeyer M
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16182-7. PubMed ID: 21900608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-feedback quantum control of an integrated low-frequency mechanical resonator.
    Guo J; Chang J; Yao X; Gröblacher S
    Nat Commun; 2023 Aug; 14(1):4721. PubMed ID: 37543684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimode optomechanical system in the quantum regime.
    Nielsen WH; Tsaturyan Y; Møller CB; Polzik ES; Schliesser A
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):62-66. PubMed ID: 27999182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Gaussian Mechanical Motion via Single and Multiphonon Subtraction from a Thermal State.
    Enzian G; Freisem L; Price JJ; Svela AØ; Clarke J; Shajilal B; Janousek J; Buchler BC; Lam PK; Vanner MR
    Phys Rev Lett; 2021 Dec; 127(24):243601. PubMed ID: 34951800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooling-by-measurement and mechanical state tomography via pulsed optomechanics.
    Vanner MR; Hofer J; Cole GD; Aspelmeyer M
    Nat Commun; 2013; 4():2295. PubMed ID: 23945768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear optomechanical measurement of mechanical motion.
    Brawley GA; Vanner MR; Larsen PE; Schmid S; Boisen A; Bowen WP
    Nat Commun; 2016 Mar; 7():10988. PubMed ID: 26996234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room-temperature quantum optomechanics using an ultralow noise cavity.
    Huang G; Beccari A; Engelsen NJ; Kippenberg TJ
    Nature; 2024 Feb; 626(7999):512-516. PubMed ID: 38356070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser cooling of a nanomechanical oscillator into its quantum ground state.
    Chan J; Alegre TP; Safavi-Naeini AH; Hill JT; Krause A; Gröblacher S; Aspelmeyer M; Painter O
    Nature; 2011 Oct; 478(7367):89-92. PubMed ID: 21979049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-optical optomechanics: an optical spring mirror.
    Singh S; Phelps GA; Goldbaum DS; Wright EM; Meystre P
    Phys Rev Lett; 2010 Nov; 105(21):213602. PubMed ID: 21231305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State.
    Guo J; Norte R; Gröblacher S
    Phys Rev Lett; 2019 Nov; 123(22):223602. PubMed ID: 31868423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator.
    Noguchi A; Yamazaki R; Tabuchi Y; Nakamura Y
    Nat Commun; 2020 Mar; 11(1):1183. PubMed ID: 32184387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics.
    Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optomechanics with levitated particles.
    Millen J; Monteiro TS; Pettit R; Vamivakas AN
    Rep Prog Phys; 2020 Feb; 83(2):026401. PubMed ID: 31825901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical Squeezing via Unstable Dynamics in a Microcavity.
    Kustura K; Gonzalez-Ballestero C; Sommer ALR; Meyer N; Quidant R; Romero-Isart O
    Phys Rev Lett; 2022 Apr; 128(14):143601. PubMed ID: 35476467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity.
    Wang DY; Bai CH; Wang HF; Zhu AD; Zhang S
    Sci Rep; 2016 Apr; 6():24421. PubMed ID: 27091072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics.
    Rashid M; Tufarelli T; Bateman J; Vovrosh J; Hempston D; Kim MS; Ulbricht H
    Phys Rev Lett; 2016 Dec; 117(27):273601. PubMed ID: 28084746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic Quantum Superposition in Cavity Optomechanics.
    Liao JQ; Tian L
    Phys Rev Lett; 2016 Apr; 116(16):163602. PubMed ID: 27152802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesizing arbitrary quantum states in a superconducting resonator.
    Hofheinz M; Wang H; Ansmann M; Bialczak RC; Lucero E; Neeley M; O'Connell AD; Sank D; Wenner J; Martinis JM; Cleland AN
    Nature; 2009 May; 459(7246):546-9. PubMed ID: 19478780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.