These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21901154)

  • 81. Hyperparasitoids use herbivore-induced plant volatiles to locate their parasitoid host.
    Poelman EH; Bruinsma M; Zhu F; Weldegergis BT; Boursault AE; Jongema Y; van Loon JJ; Vet LE; Harvey JA; Dicke M
    PLoS Biol; 2012; 10(11):e1001435. PubMed ID: 23209379
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Restoration of an endangered plant, Hygrophila pogonocalyx, leads to an adaptive host shift of the chocolate pansy (Junonia iphita iphita).
    Tan WH; Liu TH; Lin YK; Hsu YF
    Zoology (Jena); 2014 Aug; 117(4):237-44. PubMed ID: 25037647
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature.
    Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    J Anim Ecol; 2018 Jan; 87(1):150-161. PubMed ID: 29048758
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.
    Nachappa P; Margolies DC; Nechols JR; Loughin T
    Exp Appl Acarol; 2006; 40(3-4):231-9. PubMed ID: 17225078
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Interspecific Differences in the Larval Performance of Pieris Butterflies (Lepidoptera: Pieridae) Are Associated with Differences in the Glucosinolate Profiles of Host Plants.
    Okamura Y; Tsuzuki N; Kuroda S; Sato A; Sawada Y; Hirai MY; Murakami M
    J Insect Sci; 2019 May; 19(3):. PubMed ID: 31039584
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Host Plant Choice Determined by Reproductive Interference between Closely Related Butterflies.
    Ohsaki N; Ohata M; Sato Y; Rausher MD
    Am Nat; 2020 Oct; 196(4):512-523. PubMed ID: 32970464
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A search for odour encoding in the olfactory lobe.
    Yamada M
    J Physiol; 1971 Apr; 214(1):127-43. PubMed ID: 5575349
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Olfactory preferences of Popillia japonica, Vanessa cardui, and Aphis glycines for Glycine max grown under elevated CO2.
    O'Neill BF; Zangerl AR; Delucia EH; Berenbaum MR
    Environ Entomol; 2010 Aug; 39(4):1291-301. PubMed ID: 22127180
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Integration of olfactory information in the Colorado potato beetle brain.
    De Jong R; Visser JH
    Brain Res; 1988 Apr; 447(1):10-7. PubMed ID: 3382944
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Climate change, phenology, and butterfly host plant utilization.
    Navarro-Cano JA; Karlsson B; Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    Ambio; 2015 Jan; 44 Suppl 1(Suppl 1):S78-88. PubMed ID: 25576283
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Approach trajectory and solar position affect host plant attractiveness to the small white butterfly.
    Blake AJ; Couture S; Go MC; Gries G
    Vision Res; 2021 Sep; 186():140-149. PubMed ID: 34126548
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae.
    Zheng SJ; Snoeren TA; Hogewoning SW; van Loon JJ; Dicke M
    New Phytol; 2010 May; 186(3):733-45. PubMed ID: 20298487
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Experience-induced habituation and preference towards non-host plant odors in ovipositing females of a moth.
    Wang H; Guo WF; Zhang PJ; Wu ZY; Liu SS
    J Chem Ecol; 2008 Mar; 34(3):330-8. PubMed ID: 18253797
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Cardenolide Intake, Sequestration, and Excretion by the Monarch Butterfly along Gradients of Plant Toxicity and Larval Ontogeny.
    Jones PL; Petschenka G; Flacht L; Agrawal AA
    J Chem Ecol; 2019 Mar; 45(3):264-277. PubMed ID: 30793231
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly.
    Ozaki K; Ryuda M; Yamada A; Utoguchi A; Ishimoto H; Calas D; Marion-Poll F; Tanimura T; Yoshikawa H
    Nat Commun; 2011 Nov; 2():542. PubMed ID: 22086342
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore.
    Nieminen M; Suomi J; Van Nouhuys S; Sauri P; Riekkola ML
    J Chem Ecol; 2003 Apr; 29(4):823-44. PubMed ID: 12775146
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Normal glomerular organization of the antennal lobes is not necessary for odor-modulated flight in female moths.
    Willis MA; Butler MA; Tolbert LP
    J Comp Physiol A; 1995 Feb; 176(2):205-16. PubMed ID: 7884684
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Combined roles of contact stimulant and deterrents in assessment of host-plant quality by ovipositing zebra swallowtail butterflies.
    Haribal M; Feeny P
    J Chem Ecol; 2003 Mar; 29(3):653-70. PubMed ID: 12757326
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae.
    Bryant SR; Thomas CD; Bale JS
    Oecologia; 2000 Jan; 122(1):1-10. PubMed ID: 28307946
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Dose-response characteristics of glomerular activity in the moth antennal lobe.
    Carlsson MA; Hansson BS
    Chem Senses; 2003 May; 28(4):269-78. PubMed ID: 12771013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.