These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 21901405)
1. Physisporinus vitreus: a versatile white rot fungus for engineering value-added wood products. Schwarze FW; Schubert M Appl Microbiol Biotechnol; 2011 Nov; 92(3):431-40. PubMed ID: 21901405 [TBL] [Abstract][Full Text] [Related]
2. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fuhr MJ; Schubert M; Schwarze FW; Herrmann HJ Fungal Biol; 2011 Sep; 115(9):919-32. PubMed ID: 21872189 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the interspecific competitive ability of the bioincising fungus Physisporinus vitreus. Schubert M; Schwarze FW J Basic Microbiol; 2011 Feb; 51(1):80-8. PubMed ID: 21077121 [TBL] [Abstract][Full Text] [Related]
4. Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Hildén K; Hakala TK; Maijala P; Lundell TK; Hatakka A Appl Microbiol Biotechnol; 2007 Nov; 77(2):301-9. PubMed ID: 17805527 [TBL] [Abstract][Full Text] [Related]
5. Modelling the effect of environmental factors on the hyphal growth of the basidiomycete Physisporinus vitreus. Fuhr MJ; Stührk C; Schubert M; Schwarze FW; Herrmann HJ J Basic Microbiol; 2012 Oct; 52(5):523-30. PubMed ID: 22144072 [TBL] [Abstract][Full Text] [Related]
6. Synchrotron X-ray micro-tomography imaging and analysis of wood degraded by Physisporinus vitreus and Xylaria longipes. Sedighi Gilani M; Boone MN; Mader K; Schwarze FWMR J Struct Biol; 2014 Aug; 187(2):149-157. PubMed ID: 24964385 [TBL] [Abstract][Full Text] [Related]
7. Determination of optimal growth parameters for the bioincising fungus Physisporinus vitreus by means of response surface methodology. Schubert M; Dengler V; Mourad S; Schwarze FW J Appl Microbiol; 2009 May; 106(5):1734-42. PubMed ID: 19226384 [TBL] [Abstract][Full Text] [Related]
8. The molecular response of the white-rot fungus Dichomitus squalens to wood and non-woody biomass as examined by transcriptome and exoproteome analyses. Rytioja J; Hildén K; Di Falco M; Zhou M; Aguilar-Pontes MV; Sietiö OM; Tsang A; de Vries RP; Mäkelä MR Environ Microbiol; 2017 Mar; 19(3):1237-1250. PubMed ID: 28028889 [TBL] [Abstract][Full Text] [Related]
9. Transcriptional analysis of selected cellulose-acting enzymes encoding genes of the white-rot fungus Dichomitus squalens on spruce wood and microcrystalline cellulose. Rytioja J; Hildén K; Hatakka A; Mäkelä MR Fungal Genet Biol; 2014 Nov; 72():91-98. PubMed ID: 24394946 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies. Buschke N; Schäfer R; Becker J; Wittmann C Bioresour Technol; 2013 May; 135():544-54. PubMed ID: 23260271 [TBL] [Abstract][Full Text] [Related]
12. [Improving industrial microbial stress resistance by metabolic engineering: a review]. Fu R; Li Y Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1209-17. PubMed ID: 21141110 [TBL] [Abstract][Full Text] [Related]
13. Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: influence on extractive contents, pulping process parameters, paper quality and effluent toxicity. van Beek TA; Kuster B; Claassen FW; Tienvieri T; Bertaud F; Lenon G; Petit-Conil M; Sierra-Alvarez R Bioresour Technol; 2007 Jan; 98(2):302-11. PubMed ID: 16517156 [TBL] [Abstract][Full Text] [Related]
14. Tolerance to wood preservatives by copper-tolerant wood-rot fungi native to south-central Chile. Guillén Y; Navias D; Machuca A Biodegradation; 2009 Feb; 20(1):135-42. PubMed ID: 18654748 [TBL] [Abstract][Full Text] [Related]
15. [Transcriptome platforms and applications to metabolic engineering]. Shi S; Chen T; Zhao X Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1187-98. PubMed ID: 21141108 [TBL] [Abstract][Full Text] [Related]
16. Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi. Freitas AC; Ferreira F; Costa AM; Pereira R; Antunes SC; Gonçalves F; Rocha-Santos TA; Diniz MS; Castro L; Peres I; Duarte AC Sci Total Environ; 2009 May; 407(10):3282-9. PubMed ID: 19269018 [TBL] [Abstract][Full Text] [Related]
17. Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction: the potential of mass loss as a synthetic indicator. Almeida G; Brito JO; Perré P Bioresour Technol; 2010 Dec; 101(24):9778-84. PubMed ID: 20705459 [TBL] [Abstract][Full Text] [Related]
18. Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Geng X; Li K Appl Microbiol Biotechnol; 2002 Nov; 60(3):342-6. PubMed ID: 12436317 [TBL] [Abstract][Full Text] [Related]
19. Use of NIR and pyrolysis-MBMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. Kelley SS; Jellison J; Goodell B FEMS Microbiol Lett; 2002 Mar; 209(1):107-11. PubMed ID: 12007662 [TBL] [Abstract][Full Text] [Related]