BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21901784)

  • 41. Ripply2 is essential for precise somite formation during mouse early development.
    Chan T; Kondow A; Hosoya A; Hitachi K; Yukita A; Okabayashi K; Nakamura H; Ozawa H; Kiyonari H; Michiue T; Ito Y; Asashima M
    FEBS Lett; 2007 Jun; 581(14):2691-6. PubMed ID: 17531978
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcriptional autoregulation of zebrafish
    Ban H; Yokota D; Otosaka S; Kikuchi M; Kinoshita H; Fujino Y; Yabe T; Ovara H; Izuka A; Akama K; Yamasu K; Takada S; Kawamura A
    Development; 2019 Sep; 146(18):. PubMed ID: 31444219
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Groucho-associated transcriptional repressor ripply1 is required for proper transition from the presomitic mesoderm to somites.
    Kawamura A; Koshida S; Hijikata H; Ohbayashi A; Kondoh H; Takada S
    Dev Cell; 2005 Dec; 9(6):735-44. PubMed ID: 16326386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Segmentation in vertebrates: a molecular clock linked to periodic somite formation].
    Palmeirim I
    J Soc Biol; 1999; 193(3):243-56. PubMed ID: 10542954
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of zebrafish somitogenesis.
    Schröter C; Herrgen L; Cardona A; Brouhard GJ; Feldman B; Oates AC
    Dev Dyn; 2008 Mar; 237(3):545-53. PubMed ID: 18265021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock.
    Riedel-Kruse IH; Müller C; Oates AC
    Science; 2007 Sep; 317(5846):1911-5. PubMed ID: 17702912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo.
    Hollway GE; Bryson-Richardson RJ; Berger S; Cole NJ; Hall TE; Currie PD
    Dev Cell; 2007 Feb; 12(2):207-19. PubMed ID: 17276339
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Time-lapse observation of stepwise regression of Erk activity in zebrafish presomitic mesoderm.
    Sari DWK; Akiyama R; Naoki H; Ishijima H; Bessho Y; Matsui T
    Sci Rep; 2018 Mar; 8(1):4335. PubMed ID: 29531317
    [TBL] [Abstract][Full Text] [Related]  

  • 49. terra is a left-right asymmetry gene required for left-right synchronization of the segmentation clock.
    Saúde L; Lourenço R; Gonçalves A; Palmeirim I
    Nat Cell Biol; 2005 Sep; 7(9):918-20. PubMed ID: 16136187
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Retinoic acid controls proper head-to-trunk linkage in zebrafish by regulating an anteroposterior somitogenetic rate difference.
    Retnoaji B; Akiyama R; Matta T; Bessho Y; Matsui T
    Development; 2014 Jan; 141(1):158-65. PubMed ID: 24284210
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function.
    Zhang L; Kendrick C; Jülich D; Holley SA
    Development; 2008 Jun; 135(12):2065-70. PubMed ID: 18480162
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Initiation and propagation of posterior to anterior (PA) waves in zebrafish left-right development.
    Wang X; Yost HJ
    Dev Dyn; 2008 Dec; 237(12):3640-7. PubMed ID: 18985756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anterior and posterior waves of cyclic her1 gene expression are differentially regulated in the presomitic mesoderm of zebrafish.
    Gajewski M; Sieger D; Alt B; Leve C; Hans S; Wolff C; Rohr KB; Tautz D
    Development; 2003 Sep; 130(18):4269-78. PubMed ID: 12900444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sema3a plays a role in the pathogenesis of CHARGE syndrome.
    Ufartes R; Schwenty-Lara J; Freese L; Neuhofer C; Möller J; Wehner P; van Ravenswaaij-Arts CMA; Wong MTY; Schanze I; Tzschach A; Bartsch O; Borchers A; Pauli S
    Hum Mol Genet; 2018 Apr; 27(8):1343-1352. PubMed ID: 29432577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Retinoic acid signaling sequentially controls visceral and heart laterality in zebrafish.
    Huang S; Ma J; Liu X; Zhang Y; Luo L
    J Biol Chem; 2011 Aug; 286(32):28533-43. PubMed ID: 21669875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aggressive-like behavior and increased glycine transporters in a zebrafish model of CHARGE syndrome.
    Liu H; Liu ZZ
    Behav Brain Res; 2020 Jan; 378():112293. PubMed ID: 31610215
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel classification system to predict the pathogenic effects of CHD7 missense variants in CHARGE syndrome.
    Bergman JE; Janssen N; van der Sloot AM; de Walle HE; Schoots J; Rendtorff ND; Tranebjaerg L; Hoefsloot LH; van Ravenswaaij-Arts CM; Hofstra RM
    Hum Mutat; 2012 Aug; 33(8):1251-60. PubMed ID: 22539353
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation.
    Asad Z; Pandey A; Babu A; Sun Y; Shevade K; Kapoor S; Ullah I; Ranjan S; Scaria V; Bajpai R; Sachidanandan C
    Hum Mol Genet; 2016 Aug; 25(16):3539-3554. PubMed ID: 27418670
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zebrafish frizzled-2 morphant displays defects in body axis elongation.
    Sumanas S; Kim HJ; Hermanson S; Ekker SC
    Genesis; 2001 Jul; 30(3):114-8. PubMed ID: 11477686
    [No Abstract]   [Full Text] [Related]  

  • 60. 8q12.1q12.3 de novo microdeletion involving the CHD7 gene in a patient without the major features of CHARGE syndrome: case report and critical review of the literature.
    Palumbo O; Palumbo P; Stallone R; Palladino T; Zelante L; Carella M
    Gene; 2013 Jan; 513(1):209-13. PubMed ID: 23142376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.