These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 21901844)
1. Experimental strategies for investigating psychostimulant drug actions and prefrontal cortical function in ADHD and related attention disorders. Agster KL; Clark BD; Gao WJ; Shumsky JS; Wang HX; Berridge CW; Waterhouse BD Anat Rec (Hoboken); 2011 Oct; 294(10):1698-712. PubMed ID: 21901844 [TBL] [Abstract][Full Text] [Related]
3. Oral Administration of Methylphenidate (Ritalin) Affects Dopamine Release Differentially Between the Prefrontal Cortex and Striatum: A Microdialysis Study in the Monkey. Kodama T; Kojima T; Honda Y; Hosokawa T; Tsutsui KI; Watanabe M J Neurosci; 2017 Mar; 37(9):2387-2394. PubMed ID: 28154152 [TBL] [Abstract][Full Text] [Related]
4. The Effects of Methylphenidate (Ritalin) on the Neurophysiology of the Monkey Caudal Prefrontal Cortex. Tremblay S; Pieper F; Sachs A; Joober R; Martinez-Trujillo J eNeuro; 2019; 6(1):. PubMed ID: 30847388 [TBL] [Abstract][Full Text] [Related]
6. Impact of developmental exposure to methylphenidate on rat brain's immune privilege and behavior: Control versus ADHD model. Coelho-Santos V; Cardoso FL; Leitão RA; Fontes-Ribeiro CA; Silva AP Brain Behav Immun; 2018 Feb; 68():169-182. PubMed ID: 29061363 [TBL] [Abstract][Full Text] [Related]
7. Methylphenidate does not improve interference control during a working memory task in young patients with attention-deficit hyperactivity disorder. Prehn-Kristensen A; Krauel K; Hinrichs H; Fischer J; Malecki U; Schuetze H; Wolff S; Jansen O; Duezel E; Baving L Brain Res; 2011 May; 1388():56-68. PubMed ID: 21385569 [TBL] [Abstract][Full Text] [Related]
8. Clinically-oriented monitoring of acute effects of methylphenidate on cerebral hemodynamics in ADHD children using fNIRS. Monden Y; Dan H; Nagashima M; Dan I; Kyutoku Y; Okamoto M; Yamagata T; Momoi MY; Watanabe E Clin Neurophysiol; 2012 Jun; 123(6):1147-57. PubMed ID: 22088661 [TBL] [Abstract][Full Text] [Related]
9. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Berridge CW; Devilbiss DM; Andrzejewski ME; Arnsten AF; Kelley AE; Schmeichel B; Hamilton C; Spencer RC Biol Psychiatry; 2006 Nov; 60(10):1111-20. PubMed ID: 16806100 [TBL] [Abstract][Full Text] [Related]
10. Methylphenidate administration reverts attentional inflexibility in adolescent rats submitted to a model of neonatal hypoxia-ischemia: Predictive validity for ADHD study. Miguel PM; Deniz BF; Confortim HD; Bronauth LP; de Oliveira BC; Alves MB; Silveira PP; Pereira LO Exp Neurol; 2019 May; 315():88-99. PubMed ID: 30771298 [TBL] [Abstract][Full Text] [Related]
11. Age-dependent, lasting effects of methylphenidate on the GABAergic system of ADHD patients. Solleveld MM; Schrantee A; Puts NAJ; Reneman L; Lucassen PJ Neuroimage Clin; 2017; 15():812-818. PubMed ID: 28725548 [TBL] [Abstract][Full Text] [Related]
12. Treatment with a clinically-relevant dose of methylphenidate alters NMDA receptor composition and synaptic plasticity in the juvenile rat prefrontal cortex. Urban KR; Li YC; Gao WJ Neurobiol Learn Mem; 2013 Mar; 101():65-74. PubMed ID: 23333502 [TBL] [Abstract][Full Text] [Related]
13. Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task. Rubia K; Halari R; Cubillo A; Mohammad AM; Brammer M; Taylor E Neuropharmacology; 2009 Dec; 57(7-8):640-52. PubMed ID: 19715709 [TBL] [Abstract][Full Text] [Related]
14. First-Dose Methylphenidate-Induced Changes in Brain Functional Connectivity Are Correlated With 3-Month Attention-Deficit/Hyperactivity Disorder Symptom Response. Silberstein RB; Levy F; Pipingas A; Farrow M Biol Psychiatry; 2017 Nov; 82(9):679-686. PubMed ID: 28465019 [TBL] [Abstract][Full Text] [Related]
15. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder. Somkuwar SS; Kantak KM; Dwoskin LP J Neurosci Methods; 2015 Aug; 252():55-63. PubMed ID: 25680322 [TBL] [Abstract][Full Text] [Related]
16. The age-dependent effects of a single-dose methylphenidate challenge on cerebral perfusion in patients with attention-deficit/hyperactivity disorder. Schrantee A; Mutsaerts H; Bouziane C; Tamminga H; Bottelier MA; Reneman L Neuroimage Clin; 2017; 13():123-129. PubMed ID: 27942455 [TBL] [Abstract][Full Text] [Related]
17. Cognitive and emotional behavioural changes associated with methylphenidate treatment: a review of preclinical studies. Britton GB Int J Neuropsychopharmacol; 2012 Feb; 15(1):41-53. PubMed ID: 21439107 [TBL] [Abstract][Full Text] [Related]
18. Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors. Cheng J; Xiong Z; Duffney LJ; Wei J; Liu A; Liu S; Chen GJ; Yan Z Biol Psychiatry; 2014 Dec; 76(12):953-62. PubMed ID: 24832867 [TBL] [Abstract][Full Text] [Related]
19. Neurocircuitry underlying the preferential sensitivity of prefrontal catecholamines to low-dose psychostimulants. Schmeichel BE; Berridge CW Neuropsychopharmacology; 2013 May; 38(6):1078-84. PubMed ID: 23303075 [TBL] [Abstract][Full Text] [Related]
20. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action. Zhang CL; Feng ZJ; Liu Y; Ji XH; Peng JY; Zhang XH; Zhen XC; Li BM PLoS One; 2012; 7(12):e51910. PubMed ID: 23284812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]