BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2190207)

  • 1. [Stability of biocatalysts on the basis of carrageenan-immobilized Escherichia coli during continuous synthesis of L-malic acid].
    Verevkin AN; Iakovleva VI
    Prikl Biokhim Mikrobiol; 1990; 26(1):19-25. PubMed ID: 2190207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Enzymatic synthesis of L-malic acid from fumaric acid using immobilized Escherichia coli cells].
    Verevkin AN; Zueva NN; Iakovleva VI; Sokolova EN; Golovkina GP
    Prikl Biokhim Mikrobiol; 1988; 24(1):35-41. PubMed ID: 3285339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fumarate hydratase activity of various Escherichia coli strains].
    GubnitskiÄ­ LS; Mekhtiev AA; Iakovleva VI; Berezin IV
    Prikl Biokhim Mikrobiol; 1984; 20(3):329-33. PubMed ID: 6379637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.
    Tajima T; Hamada M; Nakashimada Y; Kato J
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1319-24. PubMed ID: 26254042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of an enzyme membrane reactor with immobilized fumarase for production of L-malic acid.
    Giorno L; Drioli E; Carvoli G; Cassano A; Donato L
    Biotechnol Bioeng; 2001 Jan; 72(1):77-84. PubMed ID: 11084597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The effect of composition and ionic strength of external solution on the aspartate-ammonia lyase and fumarate hydratase activity in Escherichia coli cells].
    Verevkin AN; Iakovleva VI; Zueva NN
    Biokhimiia; 1989 Dec; 54(12):1994-9. PubMed ID: 2699255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of the aspartase activity and its stability in Escherichia coli cells immobilized on polyacrylamide gel and carrageenan].
    Zueva NN; Iakovleva VI; Verevkin AN; Avsiuk IV; Aren AK
    Prikl Biokhim Mikrobiol; 1985; 21(3):334-41. PubMed ID: 3900976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of L-malic acid.
    Takata I; Tosa T
    Bioprocess Technol; 1993; 16():53-65. PubMed ID: 7763350
    [No Abstract]   [Full Text] [Related]  

  • 9. [Stability of the biocatalysts of L-aspartic acid synthesis based on immobilized Escherichia coli cells].
    Zueva NN; Iakovleva VI; Avsiuk IV; Arens AK; Fechina VA
    Prikl Biokhim Mikrobiol; 1982; 18(5):681-7. PubMed ID: 6755439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of enzymes and microbial cells using carrageenan as matrix.
    Tosa T; Sato T; Mori T; Yamamoto K; Takata I; Nishida Y; Chibata I
    Biotechnol Bioeng; 1979 Oct; 21(10):1697-709. PubMed ID: 385076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the optimal conditions in simultaneous reaction and separation for L-malic acid production].
    Hu YH; Ouyang PK; Shen SB; Chen WL
    Sheng Wu Gong Cheng Xue Bao; 2001 Sep; 17(5):503-5. PubMed ID: 11797209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Kinetics of fumarate hydratase reaction catalyzed by free cells of Escherichia coli].
    GubnitskiÄ­ LS; Margolin AL; Belousov AS; Iakovleva VI; Barezii IV
    Biokhimiia; 1981 Feb; 46(2):346-81. PubMed ID: 7018596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.
    Liu Y; Song J; Tan T; Liu L
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2823-31. PubMed ID: 25561060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and characterization of fumarase (FUMR) from Rhizopus oryzae.
    Song P; Li S; Ding Y; Xu Q; Huang H
    Fungal Biol; 2011 Jan; 115(1):49-53. PubMed ID: 21215954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp. strains.
    Presecki AV; Vasić-Racki D
    Biotechnol Lett; 2005 Dec; 27(23-24):1835-9. PubMed ID: 16328976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli.
    Afzal AR; Jeon J; Jung CH
    Biochem Biophys Res Commun; 2023 Oct; 678():144-147. PubMed ID: 37634412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor.
    Bressler E; Pines O; Goldberg I; Braun S
    Biotechnol Prog; 2002; 18(3):445-50. PubMed ID: 12052057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase.
    Pines O; Even-Ram S; Elnathan N; Battat E; Aharonov O; Gibson D; Goldberg I
    Appl Microbiol Biotechnol; 1996 Nov; 46(4):393-9. PubMed ID: 8987728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic growth of Escherichia coli on D-tartrate depends on the fumarate carrier DcuB and fumarase, rather than the L-tartrate carrier TtdT and L-tartrate dehydratase.
    Kim OB; Lux S; Unden G
    Arch Microbiol; 2007 Dec; 188(6):583-9. PubMed ID: 17643228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microcalorimetric sensor for food and cosmetic analyses: l-Malic acid determination.
    Antonelli ML; Spadaro C; Tornelli RF
    Talanta; 2008 Feb; 74(5):1450-4. PubMed ID: 18371803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.