These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21902172)

  • 1. Impedance characteristics and polarization behavior of a microbial fuel cell in response to short-term changes in medium pH.
    Jung S; Mench MM; Regan JM
    Environ Sci Technol; 2011 Oct; 45(20):9069-74. PubMed ID: 21902172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.
    Manohar AK; Bretschger O; Nealson KH; Mansfeld F
    Bioelectrochemistry; 2008 Apr; 72(2):149-54. PubMed ID: 18294928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent.
    Huang Y; He Z; Mansfeld F
    Bioelectrochemistry; 2010 Oct; 79(2):261-4. PubMed ID: 20478750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of bio-anode performance through electrochemical impedance spectroscopy.
    ter Heijne A; Schaetzle O; Gimenez S; Navarro L; Hamelers B; Fabregat-Santiago F
    Bioelectrochemistry; 2015 Dec; 106(Pt A):64-72. PubMed ID: 25869113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria.
    Torres CI; Kato Marcus A; Rittmann BE
    Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical impedance spectroscopy of mixed conductors under a chemical potential gradient: a case study of Pt|SDC|BSCF.
    Lai W; Haile SM
    Phys Chem Chem Phys; 2008 Feb; 10(6):865-83. PubMed ID: 18231690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating microbial fuel cell bioanode performance under different cathode conditions.
    Borole AP; Hamilton CY; Aaron DS; Tsouris C
    Biotechnol Prog; 2009; 25(6):1630-6. PubMed ID: 19731337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH.
    Behera M; Ghangrekar MM
    Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida.
    Tasca F; Gorton L; Harreither W; Haltrich D; Ludwig R; Nöll G
    Anal Chem; 2009 Apr; 81(7):2791-8. PubMed ID: 19256522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells.
    Jiang D; Li B; Jia W; Lei Y
    Appl Biochem Biotechnol; 2010 Jan; 160(1):182-96. PubMed ID: 19214793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.
    Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L
    Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilizing the baseline current of a microbial fuel cell-based biosensor through overpotential control under non-toxic conditions.
    Stein NE; Hamelers HV; Buisman CN
    Bioelectrochemistry; 2010 Apr; 78(1):87-91. PubMed ID: 19896420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage.
    Ha PT; Moon H; Kim BH; Ng HY; Chang IS
    Biosens Bioelectron; 2010 Mar; 25(7):1629-34. PubMed ID: 20036528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.