BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21902278)

  • 1. REPROVIS-DB: a benchmark system for ligand-based virtual screening derived from reproducible prospective applications.
    Ripphausen P; Wassermann AM; Bajorath J
    J Chem Inf Model; 2011 Oct; 51(10):2467-73. PubMed ID: 21902278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical comparison of virtual screening methods against the MUV data set.
    Tiikkainen P; Markt P; Wolber G; Kirchmair J; Distinto S; Poso A; Kallioniemi O
    J Chem Inf Model; 2009 Oct; 49(10):2168-78. PubMed ID: 19799417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similarity search profiles as a diagnostic tool for the analysis of virtual screening calculations.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2004; 44(4):1275-81. PubMed ID: 15272835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of confirmed inactive and randomly selected compounds as negative training examples in support vector machine-based virtual screening.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2013 Jul; 53(7):1595-601. PubMed ID: 23799269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to benchmark methods for structure-based virtual screening of large compound libraries.
    Christofferson AJ; Huang N
    Methods Mol Biol; 2012; 819():187-95. PubMed ID: 22183538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening.
    Kinnings SL; Jackson RM
    J Chem Inf Model; 2009 Sep; 49(9):2056-66. PubMed ID: 19685924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FieldChopper, a new tool for automatic model generation and virtual screening based on molecular fields.
    Kalliokoski T; Ronkko T; Poso A
    J Chem Inf Model; 2008 Jun; 48(6):1131-7. PubMed ID: 18489083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the performance of fingerprint similarity searching.
    Vogt M; Bajorath J
    Methods Mol Biol; 2011; 672():159-73. PubMed ID: 20838968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of structure-based virtual screening studies and characterization of identified active compounds.
    Ripphausen P; Stumpfe D; Bajorath J
    Future Med Chem; 2012 Apr; 4(5):603-13. PubMed ID: 22458680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of 3D virtual ligand screening methods: impact of the molecular alignment on enrichment.
    Giganti D; Guillemain H; Spadoni JL; Nilges M; Zagury JF; Montes M
    J Chem Inf Model; 2010 Jun; 50(6):992-1004. PubMed ID: 20527883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction of a generally applicable method to estimate retrieval of active molecules for similarity searching using fingerprints.
    Vogt M; Bajorath J
    ChemMedChem; 2007 Sep; 2(9):1311-20. PubMed ID: 17562536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive comparison of ligand-based virtual screening tools against the DUD data set reveals limitations of current 3D methods.
    Venkatraman V; Pérez-Nueno VI; Mavridis L; Ritchie DW
    J Chem Inf Model; 2010 Dec; 50(12):2079-93. PubMed ID: 21090728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale learning of structure-activity relationships using a linear support vector machine and problem-specific metrics.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Ostermann C; Zell A
    J Chem Inf Model; 2011 Feb; 51(2):203-13. PubMed ID: 21207929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting antitrichomonal activity: a computational screening using atom-based bilinear indices and experimental proofs.
    Marrero-Ponce Y; Meneses-Marcel A; Castillo-Garit JA; Machado-Tugores Y; Escario JA; Barrio AG; Pereira DM; Nogal-Ruiz JJ; Arán VJ; Martínez-Fernández AR; Torrens F; Rotondo R; Ibarra-Velarde F; Alvarado YJ
    Bioorg Med Chem; 2006 Oct; 14(19):6502-24. PubMed ID: 16875830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recursive median partitioning for virtual screening of large databases.
    Godden JW; Furr JR; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(1):182-8. PubMed ID: 12546552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of reduced graphs to encode bioisosterism for similarity-based virtual screening.
    Birchall K; Gillet VJ; Willett P; Ducrot P; Luttmann C
    J Chem Inf Model; 2009 Jun; 49(6):1330-46. PubMed ID: 19485397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring.
    Sastry GM; Dixon SL; Sherman W
    J Chem Inf Model; 2011 Oct; 51(10):2455-66. PubMed ID: 21870862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suitability of GRIND-based principal properties for the description of molecular similarity and ligand-based virtual screening.
    Durán A; Zamora I; Pastor M
    J Chem Inf Model; 2009 Sep; 49(9):2129-38. PubMed ID: 19728739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward a benchmarking data set able to evaluate ligand- and structure-based virtual screening using public HTS data.
    Lindh M; Svensson F; Schaal W; Zhang J; Sköld C; Brandt P; Karlén A
    J Chem Inf Model; 2015 Feb; 55(2):343-53. PubMed ID: 25564966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consideration of molecular weight during compound selection in virtual target-based database screening.
    Pan Y; Huang N; Cho S; MacKerell AD
    J Chem Inf Comput Sci; 2003; 43(1):267-72. PubMed ID: 12546562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.