BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21902279)

  • 1. Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells.
    Xiao L; Wei L; Cheng X; He Y; Yeung ES
    Anal Chem; 2011 Oct; 83(19):7340-7. PubMed ID: 21902279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging.
    He H; Xie C; Ren J
    Anal Chem; 2008 Aug; 80(15):5951-7. PubMed ID: 18590338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulation on a gold nanoparticle irradiated by electron beams.
    Chow JC; Leung MK; Jaffray DA
    Phys Med Biol; 2012 Jun; 57(11):3323-31. PubMed ID: 22572475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel evanescent wave scattering imaging method for single gold particle tracking in solution and on cell membrane.
    He H; Ren J
    Talanta; 2008 Oct; 77(1):166-71. PubMed ID: 18804615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single laser pulse induced aggregation of gold nanoparticles.
    Matsuo N; Muto H; Miyajima K; Mafuné F
    Phys Chem Chem Phys; 2007 Dec; 9(45):6027-31. PubMed ID: 18004417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles.
    Chen YS; Hung YC; Lin LW; Liau I; Hong MY; Huang GS
    Nanotechnology; 2010 Dec; 21(48):485102. PubMed ID: 21051801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold Nanoparticles Conjugated with Glycopeptides for Lectin Detection and Imaging on Cell Surface.
    Tsutsumi H; Shirai T; Ohkusa H; Mihara H
    Protein Pept Lett; 2018; 25(1):84-89. PubMed ID: 29256341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmodified "GNP-oligonucleotide" nanobiohybrids: a simple route for emission enhancement of DNA intercalators.
    Maiti S; Dutta S; Das PK
    Chemistry; 2011 Jun; 17(27):7538-48. PubMed ID: 21567505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of gold nanoparticle aggregation: experiments and modeling.
    Kim T; Lee CH; Joo SW; Lee K
    J Colloid Interface Sci; 2008 Feb; 318(2):238-43. PubMed ID: 18022182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles.
    Kong T; Zeng J; Wang X; Yang X; Yang J; McQuarrie S; McEwan A; Roa W; Chen J; Xing JZ
    Small; 2008 Sep; 4(9):1537-43. PubMed ID: 18712753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering.
    Xie W; Wang L; Zhang Y; Su L; Shen A; Tan J; Hu J
    Bioconjug Chem; 2009 Apr; 20(4):768-73. PubMed ID: 19267459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of transfection efficiencies of cationic glyconanoparticles of different sizes in human cell line.
    Ahmed M; Deng Z; Narain R
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1980-7. PubMed ID: 20355823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free optical characterization methods for detecting amine silanization-driven gold nanoparticle self-assembly.
    Roy S; Dixit CK; Woolley R; O'Kennedy R; McDonagh C
    Langmuir; 2011 Sep; 27(17):10421-8. PubMed ID: 21780775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells.
    Zhang Z; Jia J; Lai Y; Ma Y; Weng J; Sun L
    Bioorg Med Chem; 2010 Aug; 18(15):5528-34. PubMed ID: 20621495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte Carlo study.
    Jones BL; Cho SH
    Phys Med Biol; 2011 Jun; 56(12):3719-30. PubMed ID: 21628767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles.
    Huang Y; Kim DH
    Nanoscale; 2011 Aug; 3(8):3228-32. PubMed ID: 21698325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip.
    Sato Y; Hosokawa K; Maeda M
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):71-6. PubMed ID: 17976962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.