These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 21902327)

  • 1. Raman lasing with a cold atom gain medium in a high-finesse optical cavity.
    Vrijsen G; Hosten O; Lee J; Bernon S; Kasevich MA
    Phys Rev Lett; 2011 Aug; 107(6):063904. PubMed ID: 21902327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for lasing with cold atoms as the gain medium.
    Guerin W; Michaud F; Kaiser R
    Phys Rev Lett; 2008 Aug; 101(9):093002. PubMed ID: 18851608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lasing by driven atoms-cavity system in collective strong coupling regime.
    Sawant R; Rangwala SA
    Sci Rep; 2017 Sep; 7(1):11432. PubMed ID: 28900221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superradiance on the millihertz linewidth strontium clock transition.
    Norcia MA; Winchester MN; Cline JR; Thompson JK
    Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuous-wave Raman silicon laser.
    Rong H; Jones R; Liu A; Cohen O; Hak D; Fang A; Paniccia M
    Nature; 2005 Feb; 433(7027):725-8. PubMed ID: 15716948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave anti-Stokes Raman laser based on phase-matched nondegenerate four-wave mixing.
    Zaitsu S; Imasaka T
    Opt Lett; 2015 Jan; 40(1):73-6. PubMed ID: 25531612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional Bistability and Nonreciprocal Lasing with Cold Atoms in a Ring Cavity.
    Megyeri B; Harvie G; Lampis A; Goldwin J
    Phys Rev Lett; 2018 Oct; 121(16):163603. PubMed ID: 30387648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrum of a Fabry-Perot resonant cavity containing an active medium.
    Hochheimer BF
    Appl Opt; 1966 Jan; 5(1):113-20. PubMed ID: 20048795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threshold of a random laser with cold atoms.
    Froufe-Pérez LS; Guerin W; Carminati R; Kaiser R
    Phys Rev Lett; 2009 May; 102(17):173903. PubMed ID: 19518785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stokes mode Raman random lasing in a fully biocompatible medium.
    Gummaluri VS; Krishnan SR; Vijayan C
    Opt Lett; 2018 Dec; 43(23):5865-5868. PubMed ID: 30499961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser.
    Pang M; Bao X; Chen L
    Opt Lett; 2013 Jun; 38(11):1866-8. PubMed ID: 23722771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuum-stimulated raman scattering based on adiabatic passage in a high-finesse optical cavity.
    Hennrich M; Legero T; Kuhn A; Rempe G
    Phys Rev Lett; 2000 Dec; 85(23):4872-5. PubMed ID: 11102139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lasing in plasmon-induced transparency nanocavity.
    Deng ZL; Dong JW
    Opt Express; 2013 Aug; 21(17):20291-302. PubMed ID: 24105575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic loading of individual atoms to a high-finesse optical cavity.
    Fortier KM; Kim SY; Gibbons MJ; Ahmadi P; Chapman MS
    Phys Rev Lett; 2007 Jun; 98(23):233601. PubMed ID: 17677905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system.
    Khudaverdyan M; Alt W; Kampschulte T; Reick S; Thobe A; Widera A; Meschede D
    Phys Rev Lett; 2009 Sep; 103(12):123006. PubMed ID: 19792433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superresolution stimulated Raman scattering microscopy using 2-ENZ nano-composites.
    Kharintsev SS; Kharitonov AV; Alekseev AM; Kazarian SG
    Nanoscale; 2019 Apr; 11(16):7710-7719. PubMed ID: 30946390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency stabilized coherent Brillouin random fiber laser: theory and experiments.
    Pang M; Bao X; Chen L; Qin Z; Lu Y; Lu P
    Opt Express; 2013 Nov; 21(22):27155-68. PubMed ID: 24216939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective atomic motion in an optical lattice formed inside a high finesse cavity.
    Nagorny B; Elsässer T; Hemmerich A
    Phys Rev Lett; 2003 Oct; 91(15):153003. PubMed ID: 14611465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation oscillations, stability, and cavity feedback in a superradiant Raman laser.
    Bohnet JG; Chen Z; Weiner JM; Cox KC; Thompson JK
    Phys Rev Lett; 2012 Dec; 109(25):253602. PubMed ID: 23368460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.