These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21902328)

  • 1. Acoustic resonators for far-field control of sound on a subwavelength scale.
    Lemoult F; Fink M; Lerosey G
    Phys Rev Lett; 2011 Aug; 107(6):064301. PubMed ID: 21902328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrabroadband sound control with deep-subwavelength plasmacoustic metalayers.
    Sergeev S; Fleury R; Lissek H
    Nat Commun; 2023 May; 14(1):2874. PubMed ID: 37208350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metadiffusers: Deep-subwavelength sound diffusers.
    Jiménez N; Cox TJ; Romero-García V; Groby JP
    Sci Rep; 2017 Jul; 7(1):5389. PubMed ID: 28710374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fano-Like Acoustic Resonance for Subwavelength Directional Sensing: 0-360 Degree Measurement.
    Lee T; Nomura T; Su X; Iizuka H
    Adv Sci (Weinh); 2020 Mar; 7(6):1903101. PubMed ID: 32195101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant metalenses for breaking the diffraction barrier.
    Lemoult F; Lerosey G; de Rosny J; Fink M
    Phys Rev Lett; 2010 May; 104(20):203901. PubMed ID: 20867029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local-Nonlinearity-Enabled Deep Subdiffraction Control of Acoustic Waves.
    Zhong J; Hu C; Wang K; Ji J; Zhuang T; Zou H; Lu J; Heo H; Liang B; Jing Y; Cheng JC
    Phys Rev Lett; 2023 Dec; 131(23):234001. PubMed ID: 38134795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfect low-frequency sound absorption of rough neck embedded Helmholtz resonators.
    Zhang L; Xin F
    J Acoust Soc Am; 2022 Feb; 151(2):1191. PubMed ID: 35232096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field time-reversal amplification.
    Conti SG; Roux P; Kuperman WA
    J Acoust Soc Am; 2007 Jun; 121(6):3602-6. PubMed ID: 17552711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband Sound Insulation and Dual Equivalent Negative Properties of Acoustic Metamaterial with Distributed Piezoelectric Resonators.
    Zhang Z; Wang J; Li Z; Zhang X
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subwavelength broadband sound absorber based on a composite metasurface.
    Long H; Liu C; Shao C; Cheng Y; Chen K; Qiu X; Liu X
    Sci Rep; 2020 Aug; 10(1):13823. PubMed ID: 32796874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.
    Romero-García V; Theocharis G; Richoux O; Merkel A; Tournat V; Pagneux V
    Sci Rep; 2016 Jan; 6():19519. PubMed ID: 26781863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-perfect sound absorption using hybrid resonance between subwavelength Helmholtz resonators with non-uniformly partitioned cavities.
    Choi E; Jeon W
    Sci Rep; 2024 Feb; 14(1):3174. PubMed ID: 38326525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic metamaterials with negative modulus.
    Fang N; Xi D; Xu J; Ambati M; Srituravanich W; Sun C; Zhang X
    Nat Mater; 2006 Jun; 5(6):452-6. PubMed ID: 16648856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic perfect absorbers via Helmholtz resonators with embedded apertures.
    Huang S; Fang X; Wang X; Assouar B; Cheng Q; Li Y
    J Acoust Soc Am; 2019 Jan; 145(1):254. PubMed ID: 30710935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and Performance Evaluation of the Helmholtz Resonator Inspired Acoustic Absorber Using Various Materials.
    Lee SH; Kang BS; Kim GM; Roh YR; Kwak MK
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33142730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-Subwavelength Holey Acoustic Second-Order Topological Insulators.
    Zhang Z; Long H; Liu C; Shao C; Cheng Y; Liu X; Christensen J
    Adv Mater; 2019 Dec; 31(49):e1904682. PubMed ID: 31650654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Focusing ultrasound with an acoustic metamaterial network.
    Zhang S; Yin L; Fang N
    Phys Rev Lett; 2009 May; 102(19):194301. PubMed ID: 19518957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional collimated self-accelerating beam through acoustic metascreen.
    Li Y; Assouar MB
    Sci Rep; 2015 Dec; 5():17612. PubMed ID: 26620488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems.
    Jiménez N; Romero-García V; Pagneux V; Groby JP
    Sci Rep; 2017 Oct; 7(1):13595. PubMed ID: 29051627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales.
    Wang X; Chen W; Li S
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.