These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21902432)

  • 1. Microscopic theory of the tube confinement potential for liquids of topologically entangled rigid macromolecules.
    Sussman DM; Schweizer KS
    Phys Rev Lett; 2011 Aug; 107(7):078102. PubMed ID: 21902432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic theory of topologically entangled fluids of rigid macromolecules.
    Sussman DM; Schweizer KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061501. PubMed ID: 21797366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of Entanglements and Tube Confinement in Rod-Sphere Nanocomposites.
    Yamamoto U; Schweizer KS
    ACS Macro Lett; 2013 Nov; 2(11):955-959. PubMed ID: 35581859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: effects of stress on the tube confinement potential and dynamics of topologically entangled rod fluids.
    Sussman DM; Schweizer KS
    J Chem Phys; 2011 Oct; 135(13):131104. PubMed ID: 21992275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory of Anisotropic Diffusion of Entangled and Unentangled Polymers in Rod-Sphere Mixtures.
    Yamamoto U; Schweizer KS
    ACS Macro Lett; 2015 Jan; 4(1):53-57. PubMed ID: 35596372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force-extension curves for broken-rod macromolecules: Dramatic effects of different probing methods for two and three rods.
    Alexeev AV; Maltseva DV; Ivanov VA; Klushin LI; Skvortsov AM
    J Chem Phys; 2015 Apr; 142(16):164905. PubMed ID: 25933789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A force-level theory of the rheology of entangled rod and chain polymer liquids. I. Tube deformation, microscopic yielding, and the nonlinear elastic limit.
    Schweizer KS; Sussman DM
    J Chem Phys; 2016 Dec; 145(21):214903. PubMed ID: 28799380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic theory of entangled polymer melt dynamics: flexible chains as primitive-path random walks and supercoarse grained needles.
    Sussman DM; Schweizer KS
    Phys Rev Lett; 2012 Oct; 109(16):168306. PubMed ID: 23215143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Channel confinement of flexible and semiflexible macromolecules.
    Cifra P
    J Chem Phys; 2009 Dec; 131(22):224903. PubMed ID: 20001080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Similar Conformations and Dynamics in Entangled Melts and Solutions of Nonconcatenated Ring Polymers.
    Ge T; Panyukov S; Rubinstein M
    Macromolecules; 2016; 49(2):708-722. PubMed ID: 27057066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheology and microscopic topology of entangled polymeric liquids.
    Everaers R; Sukumaran SK; Grest GS; Svaneborg C; Sivasubramanian A; Kremer K
    Science; 2004 Feb; 303(5659):823-6. PubMed ID: 14764875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic cross-correlations between entangled biofilaments as they diffuse.
    Tsang B; Dell ZE; Jiang L; Schweizer KS; Granick S
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3322-3327. PubMed ID: 28283664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hopping Diffusion of Nanoparticles in Polymer Matrices.
    Cai LH; Panyukov S; Rubinstein M
    Macromolecules; 2015 Feb; 48(3):847-862. PubMed ID: 25691803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entangled polymer chain melts: orientation and deformation dependent tube confinement and interchain entanglement elasticity.
    Sussman DM; Schweizer KS
    J Chem Phys; 2013 Dec; 139(23):234904. PubMed ID: 24359390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic entangled chain dynamics of dense polymer solutions.
    Kivotides D; Wilkin SL; Theofanous TG
    J Chem Phys; 2010 Oct; 133(14):144903. PubMed ID: 20950037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macromolecular crowding in biological systems: hydrodynamics and NMR methods.
    Bernadó P; García de la Torre J; Pons M
    J Mol Recognit; 2004; 17(5):397-407. PubMed ID: 15362098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topologically frustrated dynamics of crowded charged macromolecules in charged hydrogels.
    Jia D; Muthukumar M
    Nat Commun; 2018 Jun; 9(1):2248. PubMed ID: 29884894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entangled dynamics of a stiff polymer.
    Höfling F; Munk T; Frey E; Franosch T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):060904. PubMed ID: 18643210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of an amphiphilic macromolecule under spherical confinement: an efficient route to generate hollow nanospheres.
    Glagoleva AA; Vasilevskaya VV; Yoshikawa K; Khokhlov AR
    J Chem Phys; 2013 Dec; 139(24):244901. PubMed ID: 24387390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segment-scale, force-level theory of mesoscopic dynamic localization and entropic elasticity in entangled chain polymer liquids.
    Dell ZE; Schweizer KS
    J Chem Phys; 2017 Apr; 146(13):134901. PubMed ID: 28390385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.