These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 21902612)

  • 1. Cell sources for bone tissue engineering: insights from basic science.
    Colnot C
    Tissue Eng Part B Rev; 2011 Dec; 17(6):449-57. PubMed ID: 21902612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches.
    Colnot C; Zhang X; Knothe Tate ML
    J Orthop Res; 2012 Dec; 30(12):1869-78. PubMed ID: 22778049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.
    Wang P; Liu X; Zhao L; Weir MD; Sun J; Chen W; Man Y; Xu HH
    Acta Biomater; 2015 May; 18():236-48. PubMed ID: 25712391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adult stem cells in bone and cartilage tissue engineering.
    Salgado AJ; Oliveira JT; Pedro AJ; Reis RL
    Curr Stem Cell Res Ther; 2006 Sep; 1(3):345-64. PubMed ID: 18220879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration.
    Dennis JE; Esterly K; Awadallah A; Parrish CR; Poynter GM; Goltry KL
    Stem Cells; 2007 Oct; 25(10):2575-82. PubMed ID: 17585167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.
    Colnot C
    J Bone Miner Res; 2009 Feb; 24(2):274-82. PubMed ID: 18847330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering: basic science to clinical translation.
    Kagami H; Agata H; Tojo A
    Int J Biochem Cell Biol; 2011 Mar; 43(3):286-9. PubMed ID: 21147252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone tissue engineering: current strategies and techniques--part II: Cell types.
    Szpalski C; Barbaro M; Sagebin F; Warren SM
    Tissue Eng Part B Rev; 2012 Aug; 18(4):258-69. PubMed ID: 22224439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion.
    Mauney JR; Volloch V; Kaplan DL
    Biomaterials; 2005 Nov; 26(31):6167-75. PubMed ID: 15913765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation.
    Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G
    Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds.
    Ye X; Yin X; Yang D; Tan J; Liu G
    Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data.
    Gamie Z; MacFarlane RJ; Tomkinson A; Moniakis A; Tran GT; Gamie Y; Mantalaris A; Tsiridis E
    Expert Opin Biol Ther; 2014 Nov; 14(11):1611-39. PubMed ID: 25303322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine.
    Sundelacruz S; Kaplan DL
    Semin Cell Dev Biol; 2009 Aug; 20(6):646-55. PubMed ID: 19508851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering injectable bone using bone marrow stromal cell aggregates.
    Ma D; Zhong C; Yao H; Liu Y; Chen F; Li J; Zhao J; Mao T; Ren L
    Stem Cells Dev; 2011 Jun; 20(6):989-99. PubMed ID: 21091305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances.
    Derubeis AR; Cancedda R
    Ann Biomed Eng; 2004 Jan; 32(1):160-5. PubMed ID: 14964731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow cells in the repair and modulation of heart and blood vessels: emerging opportunities in native and engineered tissue and biomechanical materials.
    Rezai N; Podor TJ; McManus BM
    Artif Organs; 2004 Feb; 28(2):142-51. PubMed ID: 14961952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidic Pre-Conditioning Enhances the Stem Cell Phenotype of Human Bone Marrow Stem/Progenitor Cells.
    Hazehara-Kunitomo Y; Hara ES; Ono M; Aung KT; Komi K; Pham HT; Akiyama K; Okada M; Oohashi T; Matsumoto T; Kuboki T
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipose stem cells and skeletal repair.
    Im GI
    Histol Histopathol; 2013 May; 28(5):557-64. PubMed ID: 23258367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior mineralization and neovascularization capacity of adult human metaphyseal periosteum-derived cells for skeletal tissue engineering applications.
    Chen D; Shen H; Shao J; Jiang Y; Lu J; He Y; Huang C
    Int J Mol Med; 2011 May; 27(5):707-13. PubMed ID: 21369695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularized bone extracellular matrix in skeletal tissue engineering.
    Rothrauff BB; Tuan RS
    Biochem Soc Trans; 2020 Jun; 48(3):755-764. PubMed ID: 32369551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.