These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21902829)

  • 1. Engineering strategy of yeast metabolism for higher alcohol production.
    Matsuda F; Furusawa C; Kondo T; Ishii J; Shimizu H; Kondo A
    Microb Cell Fact; 2011 Sep; 10():70. PubMed ID: 21902829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic engineering to alter carbon flux for various higher alcohol productions by Saccharomyces cerevisiae for Chinese Baijiu fermentation.
    Li W; Chen SJ; Wang JH; Zhang CY; Shi Y; Guo XW; Chen YF; Xiao DG
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1783-1795. PubMed ID: 29305698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.
    Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS
    J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae.
    Nishimura Y; Matsui T; Ishii J; Kondo A
    Microb Cell Fact; 2018 Mar; 17(1):38. PubMed ID: 29523149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation.
    Domingues L; Guimarães PM; Oliveira C
    Bioeng Bugs; 2010; 1(3):164-71. PubMed ID: 21326922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved ethanol productivity and ethanol tolerance through genome shuffling of Saccharomyces cerevisiae and Pichia stipitis.
    Jetti KD; Gns RR; Garlapati D; Nammi SK
    Int Microbiol; 2019 Jun; 22(2):247-254. PubMed ID: 30810988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents.
    Kim SK; Jo JH; Jin YS; Seo JH
    Bioprocess Biosyst Eng; 2017 May; 40(5):683-691. PubMed ID: 28120125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae.
    Kim SR; Ha SJ; Kong II; Jin YS
    Metab Eng; 2012 Jul; 14(4):336-43. PubMed ID: 22521925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose.
    Guo W; Sheng J; Zhao H; Feng X
    Microb Cell Fact; 2016 Feb; 15():24. PubMed ID: 26830023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frontiers of yeast metabolic engineering: diversifying beyond ethanol and Saccharomyces.
    Liu L; Redden H; Alper HS
    Curr Opin Biotechnol; 2013 Dec; 24(6):1023-30. PubMed ID: 23541504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae.
    Mitsui R; Yamada R; Matsumoto T; Ogino H
    World J Microbiol Biotechnol; 2022 Jan; 38(3):38. PubMed ID: 35018511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Saccharomyces cerevisiae for direct conversion of raw, uncooked or granular starch to ethanol.
    Görgens JF; Bressler DC; van Rensburg E
    Crit Rev Biotechnol; 2015; 35(3):369-91. PubMed ID: 24666118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Liu Y; Song D; Hu H; Yang R; Lyu X
    ACS Synth Biol; 2022 Sep; 11(9):3067-3077. PubMed ID: 35952699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of (S)-3-hydroxybutyrate by metabolically engineered Saccharomyces cerevisiae.
    Yun EJ; Kwak S; Kim SR; Park YC; Jin YS; Kim KH
    J Biotechnol; 2015 Sep; 209():23-30. PubMed ID: 26026703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.