These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 21903239)

  • 41. Introduction of the land snail Eobania vermiculata as a bioindicator organism of terrestrial pollution using a battery of biomarkers.
    Itziou A; Dimitriadis VK
    Sci Total Environ; 2011 Feb; 409(6):1181-92. PubMed ID: 21215426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intra- and inter-annual variation of Cd, Zn, Mn and Cu in foliage of poplars on contaminated soil.
    Lettens S; Vandecasteele B; De Vos B; Vansteenkiste D; Verschelde P
    Sci Total Environ; 2011 May; 409(11):2306-16. PubMed ID: 21420720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recovery and distribution of biosolids-derived trace metals in a clay loam soil.
    Sukkariyah BF; Evanylo G; Zelazny L; Chaney RL
    J Environ Qual; 2005; 34(5):1843-50. PubMed ID: 16151236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of the land snail Helix aspersa for monitoring heavy metal soil contamination in Northeast Algeria.
    Larba R; Soltani N
    Environ Monit Assess; 2014 Aug; 186(8):4987-95. PubMed ID: 24687691
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequential extraction of heavy metals during composting of sewage sludge.
    Amir S; Hafidi M; Merlina G; Revel JC
    Chemosphere; 2005 May; 59(6):801-10. PubMed ID: 15811408
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of organic acids on the transport of heavy metals in soil.
    Schwab AP; Zhu DS; Banks MK
    Chemosphere; 2008 Jun; 72(6):986-94. PubMed ID: 18482743
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants.
    Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F
    Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Palaeo-pollution from mining activities in the Vosges Mountains: 1000 years and still bioavailable.
    Mariet AL; de Vaufleury A; Bégeot C; Walter-Simonnet AV; Gimbert F
    Environ Pollut; 2016 Jul; 214():575-584. PubMed ID: 27131817
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transfer of selected mineral nutrients and trace elements in the host-hemiparasite association, Cistus-Odontites lutea, growing on and off metal-polluted sites.
    Llugany M; Lombini A; Dinelli E; Poschenrieder C; Barceló J
    Plant Biol (Stuttg); 2009 Mar; 11(2):170-8. PubMed ID: 19228324
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioassays for evaluating the water-extractable genotoxic and toxic potential of soils polluted by metal smelters.
    Vidic T; Lah B; Berden-Zrimec M; Marinsek-Logar R
    Environ Toxicol; 2009 Oct; 24(5):472-83. PubMed ID: 18973278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora.
    Moreno-Jiménez E; Peñalosa JM; Manzano R; Carpena-Ruiz RO; Gamarra R; Esteban E
    J Hazard Mater; 2009 Mar; 162(2-3):854-9. PubMed ID: 18603359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil.
    Lim TT; Chui PC; Goh KH
    Chemosphere; 2005 Feb; 58(8):1031-40. PubMed ID: 15664611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal uptake by woodlice in urban soils.
    Gál J; Markiewicz-Patkowska J; Hursthouse A; Tatner P
    Ecotoxicol Environ Saf; 2008 Jan; 69(1):139-49. PubMed ID: 17321593
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data.
    Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ
    Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In situ assessment of phyto and zooavailability of trace elements: A complementary approach to chemical extraction procedures.
    Pauget B; Faure O; Conord C; Crini N; de Vaufleury A
    Sci Total Environ; 2015 Jul; 521-522():400-10. PubMed ID: 25863318
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aromatic plant production on metal contaminated soils.
    Zheljazkov VD; Craker LE; Xing B; Nielsen NE; Wilcox A
    Sci Total Environ; 2008 Jun; 395(2-3):51-62. PubMed ID: 18353428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heavy metals in the farming environment and in some selected aquaculture species in the Van Phong Bay and Nha Trang Bay of the Khanh Hoa Province in Vietnam.
    Nghia ND; Lunestad BT; Trung TS; Son NT; Maage A
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):75-9. PubMed ID: 18810300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transversal immission patterns and leachability of heavy metals in road side soils.
    Hjortenkrans DS; Bergbäck BG; Häggerud AV
    J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A model for evaluation of the phytoavailability of trace elements to vegetables under the field conditions.
    Wang XP; Shan XQ; Zhang SZ; Wen B
    Chemosphere; 2004 May; 55(6):811-22. PubMed ID: 15041285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.