These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21903442)

  • 21. The load-bearing characteristics of the forearm: pattern of axial and bending force transmitted through ulna and radius.
    Shaaban H; Giakas G; Bolton M; Williams R; Wicks P; Scheker LR; Lees VC
    J Hand Surg Br; 2006 Jun; 31(3):274-9. PubMed ID: 16460852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.
    Norman SC; Wagner DW; Beaupre GS; Castillo AB
    J Biomech; 2015 Jan; 48(1):53-8. PubMed ID: 25443882
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross-sectional geometrical properties and bone mineral contents of the human radius and ulna.
    Hsu ES; Patwardhan AG; Meade KP; Light TR; Martin WR
    J Biomech; 1993 Nov; 26(11):1307-18. PubMed ID: 8262992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new methodology to measure load transfer through the forearm using multiple universal force sensors.
    Pfaeffle HJ; Fischer KJ; Manson TT; Tomaino MM; Herndon JH; Woo SL
    J Biomech; 1999 Dec; 32(12):1331-5. PubMed ID: 10569711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstruction of the interosseous ligament unloads metallic radial head arthroplasty and the distal ulna in cadavers.
    Pfaeffle HJ; Stabile KJ; Li ZM; Tomaino MM
    J Hand Surg Am; 2006 Feb; 31(2):269-78. PubMed ID: 16473690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of unilateral strength training and detraining on bone mineral mass and estimated mechanical characteristics of the upper limb bones in young women.
    Heinonen A; Sievänen H; Kannus P; Oja P; Vuori I
    J Bone Miner Res; 1996 Apr; 11(4):490-501. PubMed ID: 8992880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast estimation of Colles' fracture load of the distal section of the radius by homogenized finite element analysis based on HR-pQCT.
    Hosseini HS; Dünki A; Fabech J; Stauber M; Vilayphiou N; Pahr D; Pretterklieber M; Wandel J; Rietbergen BV; Zysset PK
    Bone; 2017 Apr; 97():65-75. PubMed ID: 28069517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The transverse force experienced by the radial head during axial loading of the forearm: A cadaveric study.
    Orbay JL; Mijares MR; Berriz CG
    Clin Biomech (Bristol, Avon); 2016 Jan; 31():117-22. PubMed ID: 26547522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterns of subchondral bone mineralization in the distal radioulnar joint.
    Giunta RE; Krolak C; Biemer E; Müller-Gerbl M
    J Hand Surg Am; 2005 Mar; 30(2):343-50. PubMed ID: 15781358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of partial and total interosseous membrane transection on load sharing in the cadaver forearm.
    Shepard MF; Markolf KL; Dunbar AM
    J Orthop Res; 2001 Jul; 19(4):587-92. PubMed ID: 11518266
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats.
    Mosley JR; Lanyon LE
    Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method.
    Macneil JA; Boyd SK
    Bone; 2008 Jun; 42(6):1203-13. PubMed ID: 18358799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM; Robling AG; Turner CH
    Ann Biomed Eng; 2010 Mar; 38(3):594-604. PubMed ID: 20013156
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone pattern formation in mouse limbs after amputation at the forearm level.
    Ide H
    Dev Dyn; 2012 Mar; 241(3):435-41. PubMed ID: 22275066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads.
    Singh D; Rana A; Jhajhria SK; Garg B; Pandey PM; Kalyanasundaram D
    J Appl Biomater Funct Mater; 2019; 17(2):2280800018793816. PubMed ID: 30229701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of radial head excision and distal radial shortening on load-sharing in cadaver forearms.
    Shepard MF; Markolf KL; Dunbar AM
    J Bone Joint Surg Am; 2001 Jan; 83(1):92-100. PubMed ID: 11205864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis and validation of a 3D finite element model for human forearm fracture.
    Liu J; Mustafa AK; Lees VC; Qian Z; Wei G; Lu X; Jin J; Ren L; Ren L; Wang K
    Int J Numer Method Biomed Eng; 2022 Sep; 38(9):e3617. PubMed ID: 35560814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The load on the radius and ulna in different positions of the wrist and forearm. A cadaver study.
    af Ekenstam FW; Palmer AK; Glisson RR
    Acta Orthop Scand; 1984 Jun; 55(3):363-5. PubMed ID: 6741492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting surface strains at the human distal radius during an in vivo loading task--finite element model validation and application.
    Bhatia VA; Edwards WB; Troy KL
    J Biomech; 2014 Aug; 47(11):2759-65. PubMed ID: 24882740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.