These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 21903465)

  • 1. Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides.
    Kobayashi J; Yoshimune K; Komoriya T; Kohno H
    J Biosci Bioeng; 2011 Dec; 112(6):602-5. PubMed ID: 21903465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Mo(VI) on phototrophic hydrogen production by Rhodobacter sphaeroides.
    Fang HH; Li RY; Zhang T
    Environ Technol; 2011; 32(11-12):1279-85. PubMed ID: 21970170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of Glyoxylate Bypass Increases Hydrogen Gas Yield from Acetate and l-Glutamate in
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2019 Jan; 85(2):. PubMed ID: 30413472
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11.
    Nath K; Kumar A; Das D
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):533-41. PubMed ID: 15666144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of polyhydroxybutyrate production from a wild type and two mutant strains of Rhodobacter sphaeroides using statistical method.
    Sangkharak K; Prasertsan P
    J Biotechnol; 2007 Nov; 132(3):331-40. PubMed ID: 17765994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-hydrogen production using a two-stage fermentation process.
    Alalayah WM; Kalil MS; Kadhum AA; Jahim JM; Jaapar SZ; Alauj NM
    Pak J Biol Sci; 2009 Nov; 12(22):1462-7. PubMed ID: 20180320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.
    Arumugam A; Sandhya M; Ponnusami V
    Bioresour Technol; 2014 Jul; 164():170-6. PubMed ID: 24859207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of light/dark cycle, mixing pattern and partial pressure of H2 on biohydrogen production by Rhodobacter sphaeroides ZX-5.
    Li X; Wang Y; Zhang S; Chu J; Zhang M; Huang M; Zhuang Y
    Bioresour Technol; 2011 Jan; 102(2):1142-8. PubMed ID: 20884205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria].
    Gürgün V; Kirchner G; Pfennig N
    Z Allg Mikrobiol; 1976; 16(8):573-86. PubMed ID: 12621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a Rhodobacter sphaeroides Strain That Efficiently Produces Hydrogen Gas from Acetate without Poly(β-Hydroxybutyrate) Accumulation: Insight into the Role of PhaR in Acetate Metabolism.
    Shimizu T; Teramoto H; Inui M
    Appl Environ Microbiol; 2022 Jun; 88(12):e0050722. PubMed ID: 35670584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized purple bacteria for light-driven H2 production from starch and potato fermentation effluents.
    Tekucheva DN; Laurinavichene TV; Seibert M; Tsygankov AA
    Biotechnol Prog; 2011; 27(5):1248-56. PubMed ID: 21751433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iRsp1095: a genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network.
    Imam S; Yilmaz S; Sohmen U; Gorzalski AS; Reed JL; Noguera DR; Donohue TJ
    BMC Syst Biol; 2011 Jul; 5():116. PubMed ID: 21777427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Semi-continuous photo-fermentative H2 production by Rhodobacter sphaeroides: effect of decanting volume ratio.
    Kim DH; Kim MS
    Bioresour Technol; 2012 Jan; 103(1):481-3. PubMed ID: 22036913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of bacterial hydrogen production by ATP in mixed organic compounds extracted from Rhodobacter sphaeroides aerobically cultured under dark conditions.
    Lee HJ; Jang A; Park JM; Kim YH; Chung BW; Min J
    Bioresour Technol; 2012 Nov; 123():678-81. PubMed ID: 22939604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Poly- β -Hydroxybutyrate Accumulation by Rhodobacter sphaeroides Phase Variants].
    Krasil'nikova EN; Mil'ko ES; Keppen OI; Lebedeva NV; Ivanovskii RN
    Mikrobiologiia; 2015; 84(3):311-5. PubMed ID: 26263690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentative biohydrogen production from lactate and acetate.
    Wu CW; Whang LM; Cheng HH; Chan KC
    Bioresour Technol; 2012 Jun; 113():30-6. PubMed ID: 22318084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides.
    Lee JY; Chen XJ; Lee EJ; Min KS
    J Microbiol Biotechnol; 2012 Mar; 22(3):400-6. PubMed ID: 22450797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derepressive effect of NH4+ on hydrogen production by deleting the glnA1 gene in Rhodobacter sphaeroides.
    Li X; Liu T; Wu Y; Zhao G; Zhou Z
    Biotechnol Bioeng; 2010 Jul; 106(4):564-72. PubMed ID: 20340141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Hydrogen release by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus].
    El'tsova ZA; Vasil'eva LG; Tsigankov AA
    Prikl Biokhim Mikrobiol; 2010; 46(5):532-7. PubMed ID: 21061598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.