These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 21903577)
21. Atomistic Basis of Microtubule Dynamic Instability Assessed Via Multiscale Modeling. Hemmat M; Odde DJ Ann Biomed Eng; 2021 Jul; 49(7):1716-1734. PubMed ID: 33537926 [TBL] [Abstract][Full Text] [Related]
22. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. Simon JR; Salmon ED J Cell Sci; 1990 Aug; 96 ( Pt 4)():571-82. PubMed ID: 2283357 [TBL] [Abstract][Full Text] [Related]
24. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy. Ayoub AT; Staelens M; Prunotto A; Deriu MA; Danani A; Klobukowski M; Tuszynski JA Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28937650 [TBL] [Abstract][Full Text] [Related]
25. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Wang HW; Nogales E Nature; 2005 Jun; 435(7044):911-5. PubMed ID: 15959508 [TBL] [Abstract][Full Text] [Related]
26. Metastability of microtubules induced by competing internal forces. Hunyadi V; Jánosi IM Biophys J; 2007 May; 92(9):3092-7. PubMed ID: 17307833 [TBL] [Abstract][Full Text] [Related]
27. Force production by depolymerizing microtubules: a theoretical study. Molodtsov MI; Grishchuk EL; Efremov AK; McIntosh JR; Ataullakhanov FI Proc Natl Acad Sci U S A; 2005 Mar; 102(12):4353-8. PubMed ID: 15767580 [TBL] [Abstract][Full Text] [Related]
28. Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [guanylyl 5'-(beta, gamma-methylenediphosphonate)]: variability of growth rates and the hydrolysis of GTP. Dye RB; Williams RC Biochemistry; 1996 Nov; 35(45):14331-9. PubMed ID: 8916920 [TBL] [Abstract][Full Text] [Related]
29. Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate. Walker RA; Pryer NK; Salmon ED J Cell Biol; 1991 Jul; 114(1):73-81. PubMed ID: 2050742 [TBL] [Abstract][Full Text] [Related]
30. Hydrolysis of GTP associated with the formation of tubulin oligomers is involved in microtubule nucleation. Carlier MF; Didry D; Pantaloni D Biophys J; 1997 Jul; 73(1):418-27. PubMed ID: 9199805 [TBL] [Abstract][Full Text] [Related]
31. A reassessment of the factors affecting microtubule assembly and disassembly in vitro. Caudron N; Valiron O; Usson Y; Valiron P; Job D J Mol Biol; 2000 Mar; 297(1):211-20. PubMed ID: 10704317 [TBL] [Abstract][Full Text] [Related]
32. Microtubule assembly: lattice GTP to the rescue. Cassimeris L Curr Biol; 2009 Feb; 19(4):R174-6. PubMed ID: 19243696 [TBL] [Abstract][Full Text] [Related]
33. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules. Caplow M; Fee L Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601 [TBL] [Abstract][Full Text] [Related]
34. Microtubule assembly and disassembly dynamics model: Exploring dynamic instability and identifying features of Microtubules' Growth, Catastrophe, Shortening, and Rescue. Kliuchnikov E; Klyshko E; Kelly MS; Zhmurov A; Dima RI; Marx KA; Barsegov V Comput Struct Biotechnol J; 2022; 20():953-974. PubMed ID: 35242287 [TBL] [Abstract][Full Text] [Related]